@inproceedings{EschlerWozniakRichteretal.2019, author = {Eschler, Eric and Wozniak, Felix and Richter, Christoph and Drechsler, Klaus}, title = {Materialanalyse an lokal verst{\"a}rkten Triaxialgeflechten}, series = {Leichtbau in Forschung und industrieller Anwendung von der Nano- bis zur Makroebene, LLC, Landshuter Leichtbau-Colloquium, 9}, booktitle = {Leichtbau in Forschung und industrieller Anwendung von der Nano- bis zur Makroebene, LLC, Landshuter Leichtbau-Colloquium, 9}, publisher = {Leichtbau Cluster}, address = {Landshut}, isbn = {978-3-9818439-2-7}, pages = {120 -- 131}, year = {2019}, language = {de} } @inproceedings{RingsLudowicyFingeretal.2019, author = {Rings, Ren{\´e} and Ludowicy, Jonas and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Sensitivity Analysis of General Aviation Aircraft with Parallel Hybrid-Electric Propulsion Systems}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{BaaderKellerLehmannetal.2019, author = {Baader, Fabian and Keller, Denis and Lehmann, Raphael and Gerber, Lukas and Reiswich, Martin and Dachwald, Bernd and F{\"o}rstner, Roger}, title = {Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket}, series = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, booktitle = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, issn = {0379-6566}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{EichlerSkupinThurnetal.2019, author = {Eichler, Fabian and Skupin, Marco and Thurn, Laura and Kasch, Susanne and Schmidt, Thomas}, title = {Operating limits for beam melting of glass materials}, series = {Modern Technologies in Manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern Technologies in Manufacturing (MTeM 2019)}, number = {Article 01004}, doi = {10.1051/matecconf/201929901004}, pages = {8 Seiten}, year = {2019}, abstract = {Laser-based Additive Manufacturing (AM) processes for the use of metals out of the powder bed have been investigated profusely and are prevalent in industry. Although there is a broad field of application, Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM) of glass is not fully developed yet. The material properties of glass are significantly different from the investigated metallic material for LPBF so far. As such, the process cannot be transferred, and the parameter limits and the process sequence must be redefined for glass. Starting with the characterization of glass powders, a parameter field is initially confined to investigate the process parameter of different glass powder using LPBFprocess. A feasibility study is carried out to process borosilicate glass powder. The effects of process parameters on the dimensional accuracy of fabricated parts out of borosilicate and hints for the post-processing are analysed and presented in this paper.}, language = {en} } @inproceedings{AbbasThurnKessleretal.2019, author = {Abbas, Karim and Thurn, Laura and Kessler, Julia and Eichler, Fabian}, title = {Basic research of the consideration of additive manufactured lattice structures under thermoand fluid dynamic loads}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01009}, doi = {10.1051/matecconf/201929901009}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{LuftGebhardtBalc2019, author = {Luft, Angela and Gebhardt, Andreas and Balc, Nicolae}, title = {Challenges of additive manufacturing in production systems}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01003}, doi = {10.1051/matecconf/201929901003}, pages = {6 Seiten}, year = {2019}, language = {en} } @article{WilbringEnning2019, author = {Wilbring, Daniela and Enning, Manfred}, title = {Stromversorgung auf G{\"u}terwagen - Aktuelle Bem{\"u}hungen zur Standardisierung}, series = {ETR - Eisenbahntechnische Rundschau}, volume = {68}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {11}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {64 -- 67}, year = {2019}, language = {de} } @book{Pieper2019, author = {Pieper, Martin}, title = {Quantenmechanik : Einf{\"u}hrung in die mathematische Formulierung}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-658-28329-2}, doi = {10.1007/978-3-658-28329-2}, year = {2019}, language = {de} } @inproceedings{KerpenSchooneesSchlurmannetal.2019, author = {Kerpen, Nils B. and Schoonees, Talia and Schlurmann, Torsten and Valero, Daniel and Bung, Daniel B.}, title = {waveSTEPS - Wellenauf- und Wellen{\"u}berlauf an getreppten Deckwerken}, series = {24. KFKI-Seminar 2019, 21.11.2019}, booktitle = {24. KFKI-Seminar 2019, 21.11.2019}, pages = {2 Seiten}, year = {2019}, language = {de} } @article{FingerBilBraun2019, author = {Finger, Felix and Bil, Cees and Braun, Carsten}, title = {Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {2}, issn = {1533-3868}, doi = {10.2514/1.C035428}, pages = {245 -- 255}, year = {2019}, language = {en} } @misc{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Gespr{\"a}chsf{\"u}hrungskompetenzen f{\"u}r Naturwissenschaftler und Ingenieure. Maßnahmen zur F{\"o}rderung und curricularen Verankerung von Gespr{\"a}chsf{\"u}hrungskompetenzen an Fachhochschulen}, publisher = {Deutsche Gesellschaft f{\"u}r Sprechwissenschaft und Sprecherziehung (DGSS e.V.)}, address = {Aachen}, doi = {10.13140/RG.2.2.34026.98248}, pages = {121 Seiten}, year = {2019}, language = {de} } @phdthesis{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-58-4}, year = {2019}, language = {en} } @article{EngelmannSeifertMuesetal.2019, author = {Engelmann, Ulrich M. and Seifert, Julian and Mues, Benedikt and Roitsch, Stefan and M{\´e}nager, Christine and Schmidt, Annette M. and Slabu, Ioana}, title = {Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.113}, pages = {486 -- 494}, year = {2019}, language = {en} } @article{EngelmannShashaTeemanetal.2019, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Teeman, Eric and Slabu, Iona and Krishnan, Kannan M.}, title = {Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic N{\´e}el-Brown Langevin simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.041}, pages = {450 -- 456}, year = {2019}, language = {en} } @article{SlabuRoethEngelmannetal.2019, author = {Slabu, Ioana and Roeth, Anjali A. and Engelmann, Ulrich M. and Wiekhorst, Frank and Buhl, Eva M. and Neumann, Ulf P. and Schmitz-Rode, Thomas}, title = {Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro}, series = {Nanotechnology}, volume = {30}, journal = {Nanotechnology}, number = {18}, issn = {1361-6528}, doi = {10.1088/1361-6528/ab033e}, pages = {184004}, year = {2019}, language = {en} } @article{EngelGemuendeHoltmannetal.2019, author = {Engel, Mareike and Gem{\"u}nde, Andre and Holtmann, Dirk and M{\"u}ller-Renno, Christine and Ziegler, Christiane and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Clostridium acetobutylicum's connecting world: cell appendage formation in bioelectrochemical systems}, series = {ChemElectroChem}, journal = {ChemElectroChem}, number = {Accepted Article}, publisher = {Wiley}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901656}, year = {2019}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @book{GebhardtKesslerSchwarz2019, author = {Gebhardt, Andreas and Kessler, Julia and Schwarz, Alexander}, title = {Produktgestaltung f{\"u}r die additive Fertigung}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-45285-5}, pages = {XVI, 266 Seiten : Illustrationen, Diagramme}, year = {2019}, language = {de} }