@phdthesis{Pfaff2013, author = {Pfaff, Raphael}, title = {Evaluation and extension of the potential for application of the behavioural framework to practical engineering problems}, pages = {XVI, 231 S.}, year = {2013}, language = {en} } @phdthesis{Oflaz2012, author = {Oflaz, Hakan}, title = {Entwicklung eines Prototypen zur Prognose von Fr{\"u}hgeburten : ein biomedizintechnischer Ansatz}, publisher = {Deutsche Zentralbibliothek f{\"u}r Medizin}, address = {K{\"o}ln}, doi = {10.4126/38m-004639208}, year = {2012}, language = {en} } @phdthesis{KurulganDemirci2012, author = {Kurulgan Demirci, Eylem}, title = {The effect of rhAPC on contractile tension : an in-vitro sepsis model of cardiomyocytes and endothelial cells}, year = {2012}, language = {en} } @phdthesis{Kowalski2008, author = {Kowalski, Julia}, title = {Two-phase Modeling of Debris Flows}, publisher = {Mensch und Buch}, address = {Berlin}, isbn = {978-3-86664-524-0}, pages = {148}, year = {2008}, language = {en} } @phdthesis{Kotliar2008, author = {Kotliar, Konstantin}, title = {Functional in-vivo assessment and biofluidmechanical analysis of age-related and pathological microstructural changes in retinal vessels [Elektronische Ressource]}, publisher = {-}, year = {2008}, language = {en} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @phdthesis{Jung2021, author = {Jung, Alexander}, title = {Electromechanical modelling and simulation of hiPSC-derived cardiac cell cultures}, publisher = {Universit{\"a}t Duisburg-Essen}, isbn = {978-3-9821811-1-0}, url = {http://nbn-resolving.de/https://nbn-resolving.org/urn:nbn:de:hbz:464-20210624-134942-7}, pages = {III, 135 Seiten}, year = {2021}, language = {en} } @phdthesis{Geenen2013, author = {Geenen, Eva-Maria}, title = {Studies of Epstein-Barr virus EBNA2 and its interactions with host cell factors}, publisher = {Universit{\´e} de Grenoble}, address = {Grenoble}, pages = {125 S.}, year = {2013}, language = {en} } @phdthesis{Frotscher2016, author = {Frotscher, Ralf}, title = {Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem}, year = {2016}, language = {en} } @phdthesis{Fleischhaker2009, author = {Fleischhaker, Robert}, title = {Light propagation in dense and chiral media}, year = {2009}, language = {en} } @phdthesis{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-58-4}, year = {2019}, language = {en} } @phdthesis{Duong2015, author = {Duong, Minh Tuan}, title = {Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method - SFEM}, publisher = {RWTH Aachen University}, pages = {174 S.}, year = {2015}, language = {en} } @phdthesis{Boerner2013, author = {B{\"o}rner, Sebastian}, title = {Optimization and testing of a low NOx hydrogen fuelled gas turbine}, publisher = {Universit{\´e} Libre de Bruxelles}, address = {Bruxelles}, pages = {XVI, 144 S.}, year = {2013}, language = {en} } @phdthesis{Bronder2020, author = {Bronder, Thomas}, title = {Label-free detection of tuberculosis DNA with capacitive field-effect biosensors}, publisher = {Philipps-Universit{\"a}t Marburg}, address = {Marburg}, doi = {10.17192/z2021.0056}, pages = {X, 162 S}, year = {2020}, language = {en} } @phdthesis{Bragard2012, author = {Bragard, Michael}, title = {The integrated emitter turn-off thyristor : an innovative MOS-gated high-power device. - (Aachener Beitr{\"a}ge des ISEA ; 62)}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8440-1152-4}, pages = {III, 164 S. : Ill., graph. Darst.}, year = {2012}, abstract = {This thesis introduces the Integrated Emitter Turn-Off (IETO) Thyristor as a new high-power device. Known state-of-the-art research activities like the Dual GCT, the ETO thyristor and the ICT were presented and critically reviewed. A comparison with commercialized solutions identifies the pros and cons of each type of device family. Based on this analysis, the IETO structure is proposed, covering most benefits of each device class. In particular the combination of a MOS-assisted turn-off with a thyristor-based device allows a voltage-controlled MOS switching and the low on-state voltage of the thyristors. The following synthesis of an IETO device stands on a three-dimensional field of optimization spanned by electric, mechanical and thermal aspects. From an electric point of view, the lowest possible parasitic inductance and resistance within the commutation path are optimization criteria. The mechanical construction has to withstand the required contact pressure of multiple kilo Newtons. Finally, thermal borders limit the maximum average current of the device. FEM simulations covering these three aspects are performed for several design proposals. An IETO prototype is constructed and measurements on various test benches attest thermal, mechanical and electric performance. A local decoupling of the external driver stage and the presspack housing is presented by a cable connection. This separation enables a thermal and mechanical independence, which is advantageous in terms of vibrations and thermal cycles including increased reliability. The electric pulse performance of the prototype device is a factor of 3.1 above today''s solutions. In single-pulse measurements, a current up to 1600 A was successfully turned off at 115°C with an active silicon area of 823 mm². One reason for this increased turn-off capability is the extremely low-inductive construction. Additional functionality of the IETO thyristor like over-current self-protection and defined short-circuit failure state are successfully verified.}, language = {en} } @phdthesis{Bhattarai2018, author = {Bhattarai, Aroj}, title = {Constitutive modeling of female pelvic floor dysfunctions and reconstructive surgeries using prosthetic mesh implants}, isbn = {978-3-9818074-8-6}, doi = {10.17185/duepublico/70340}, pages = {192 S.}, year = {2018}, language = {en} } @phdthesis{Behbahani2011, author = {Behbahani, Mehdi}, title = {Modeling and Simulation of Shear-Dependent Platelet Reactions in Blood Vessels and Blood-Contacting Medical Devices}, publisher = {Verlag Dr. Hut}, address = {M{\"u}nchen}, isbn = {978-3-8439-0134-5}, year = {2011}, language = {en} } @phdthesis{Beckmann2019, author = {Beckmann, Nils}, title = {Characterization of the hydrogen-dry-low-Nox-micromix-combustion-principle for hydrogen-methane fuel mixtures}, publisher = {RMIT University}, address = {Melbourne}, pages = {XV, 160 Seiten}, year = {2019}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} } @phdthesis{Albracht2010, author = {Albracht, Kirsten}, title = {Influence of mechanical properties of the leg extensor muscletendon units on running economy}, publisher = {Deutsche Sporthochschule K{\"o}ln}, address = {K{\"o}ln}, pages = {X, 1221 Bl. : graph. Darst.}, year = {2010}, language = {en} }