@article{OezsoyluAliaziziWagneretal.2024, author = {{\"O}zsoylu, Dua and Aliazizi, Fereshteh and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion}, series = {Biosensors and Bioelectronics}, volume = {261}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (eISSN)}, doi = {10.1016/j.bios.2024.116491}, pages = {11 Seiten}, year = {2024}, abstract = {As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the "real" bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an "imprinting factor" of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D).}, language = {en} } @article{ZhubanovaDigelNojimaetal.2007, author = {Zhubanova, Azhar A. and Digel, Ilya and Nojima, H. and Artmann, Gerhard}, title = {The use of bactericidal effects of cluster ions generated by plasma in medical biotechnology}, year = {2007}, abstract = {The most of conventional methods of air purification use the power of a fan to draw in air and pass it through a filter. The problem of bacterial contamination of inner parts of such a type of air conditioners in some cases draws attention towards alternative air-cleaning systems. Some manufacturers offer to use the ozone's bactericidal and deodorizing effects, but the wide spreading of such systems is restricted by the fact that toxic effects of ozone in respect of human beings are well known. In 2000 Sharp Inc. introduced "Plasma Cluster Ions (PCI)" air purification technology, which uses plasma discharge to generate cluster ions (I 0-14 ). This technology has been developed for those customers that are conscious about health and hygiene. In our experiments, we focused on some principal aspects of plasma-generated ions application - time-dependency and irreversibility of bactericidal action, spatial and kinetic characteristics of emitted cluster particles, their chemical targets in the microbial cells.}, subject = {Clusterion}, language = {en} } @article{ZhubanovaAknazarovMansurovetal.2010, author = {Zhubanova, Azhar A. and Aknazarov, S. K. and Mansurov, Zulkhair and Digel, Ilya and Kozhalakova, A. A. and Akimbekov, Nuraly S. and O'Heras, Carlos and Tazhibayeva, S. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials}, year = {2010}, abstract = {Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment.}, subject = {Kohlenstofffaser}, language = {en} } @article{WeldenNagamineKomesuWagneretal.2021, author = {Welden, Rene and Nagamine Komesu, Cindy A. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2698-5977}, doi = {10.1002/elsa.202100131}, pages = {1 -- 5}, year = {2021}, abstract = {Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin.}, language = {en} } @inproceedings{WagnerSchoening2006, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Preface of the Special Issue of I3S 2005 in J{\"u}lich (Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1365}, year = {2006}, abstract = {International Symposium on Sensor Science, I3S 2005 <3; 2005; Juelich, Germany> In: Sensors 2006, 6, 260-261 ISSN 1424-8220}, subject = {Biosensor}, language = {en} } @inproceedings{WagnerKohlFroebaetal.2006, author = {Wagner, Thorsten and Kohl, Claus-Dieter and Fr{\"o}ba, Michael and Tiemann, Michael}, title = {Gas sensing properties of ordered mesoporous SnO2}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1422}, year = {2006}, abstract = {We report on the synthesis and CO gas-sensing properties of mesoporous tin(IV) oxides (SnO2). For the synthesis cetyltrimethylammonium bromide (CTABr) was used as a structure-directing agent; the resulting SnO2 powders were applied as films to commercially available sensor substrates by drop coating. Nitrogen physisorption shows specific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verified by TEM. The film conductance was measured in dependence on the CO concentration in humid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivity at low CO concentrations and turn out to be largely insensitive towards changes in the relative humidity. We compare the materials with commercially available SnO2-based sensors.}, subject = {Biosensor}, language = {en} } @article{VuStaat2004, author = {Vu, Duc-Khoi and Staat, Manfred}, title = {An algorithm for shakedown analysis of structure with temperature dependent yield stress}, year = {2004}, abstract = {This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.}, subject = {Einspielen }, language = {en} } @inproceedings{TymeckiGlabKoncki2006, author = {Tymecki, Lukasz and Glab, Stanislaw and Koncki, Robert}, title = {Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1506}, year = {2006}, abstract = {Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used.}, subject = {Biosensor}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Calculation of load carrying capacity of shell structures with elasto-plastic material by direct methods}, year = {2007}, abstract = {Proceedings of the International Conference on Material Theory and Nonlinear Dynamics. MatDyn. Hanoi, Vietnam, Sept. 24-26, 2007, 8 p. In this paper, a method is introduced to determine the limit load of general shells using the finite element method. The method is based on an upper bound limit and shakedown analysis with elastic-perfectly plastic material model. A non-linear constrained optimisation problem is solved by using Newton's method in conjunction with a penalty method and the Lagrangean dual method. Numerical investigation of a pipe bend subjected to bending moments proves the effectiveness of the algorithm.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Finite element shakedown and limit reliability analysis of thin shells}, year = {2007}, abstract = {A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{TranPhamStaat2008, author = {Tran, Thanh Ngoc and Pham, Phu Tinh and Staat, Manfred}, title = {Reliability analysis of shells based on direct plasticity methods}, year = {2008}, abstract = {Abstracts der CD-Rom Proceedings of the 8th World Congress on Computational Mechanics (WCCM8) and 5th Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 30.06. - 04.07.2008 Venedig, Italien. 2 Seiten Zusammenfassung der Autoren mit graph. Darst. und Literaturverzeichnis}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{TranNovacekTolbaetal.2011, author = {Tran, Thanh Ngoc and Novacek, V. and Tolba, R. and Klinge, U. and Turquier, F. and Staat, Manfred}, title = {Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011}, year = {2011}, abstract = {Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue.}, subject = {Anastomose}, language = {en} } @inproceedings{TranStaatStavroulakis2014, author = {Tran, Ngoc Trinh and Staat, Manfred and Stavroulakis, G. E.}, title = {A multicriteria method for truss optimization}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{StadlerEmbsZerlinetal.2007, author = {Stadler, Andreas M. and Embs, Jan P. and Zerlin, Kay and Digel, Ilya and Artmann, Gerhard and Zaccai, Joe and B{\"u}ldt, Georg}, title = {Temperature transitions of hemoglobin and cytosolic water diffusion in human red blood cells : [poster]}, year = {2007}, abstract = {Background Hemoglobin interactions in red blood cells Hemoglobin dynamics in human red blood cells Diffusion of H2O in red blood cells}, subject = {Erythrozyt}, language = {en} } @inproceedings{StaatTranPham2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Pham, Phu Tinh}, title = {Limit and shakedown reliability analysis by nonlinear programming}, year = {2008}, abstract = {7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, Michael}, title = {The restricted influence of kinematic hardening on shakedown loads}, year = {2002}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model.}, subject = {Biomedizinische Technik}, language = {en} } @inproceedings{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, Michael}, title = {Direct static FEM approach to limit and shakedown analysis}, year = {2000}, abstract = {Safety and reliability of structures may be assessed indirectly by stress distributions. Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety factors directly in the loading space. These theorems may be used for a direct definition of the limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the limit state function is obtained from a nonlinear optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error. Moreover, the direct way leads to highly effective and precise reliability analyses. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis.}, subject = {Einspielen }, language = {en} } @inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Limit and shakedown analysis for plastic design}, year = {1997}, abstract = {Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe-junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.}, subject = {Einspielen }, language = {en} } @article{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis Using a General Purpose Finite Element Code}, series = {Proceedings of NAFEMS World Congress '97 on Design, Simulation \& Optimisation : reliability \& applicability of computational methods ; Stuttgart, Germany, 9 - 11 April 1997}, journal = {Proceedings of NAFEMS World Congress '97 on Design, Simulation \& Optimisation : reliability \& applicability of computational methods ; Stuttgart, Germany, 9 - 11 April 1997}, publisher = {NAFEMS}, address = {Glasgow}, isbn = {1-87437-620-4}, pages = {522 -- 533}, year = {1997}, language = {en} } @inproceedings{StaatDuong2016, author = {Staat, Manfred and Duong, Minh Tuan}, title = {Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies}, series = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, booktitle = {Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2}, pages = {440 -- 445}, year = {2016}, abstract = {The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects.}, language = {en} } @misc{StaatBarry2006, author = {Staat, Manfred and Barry, Steve}, title = {Continuum Mechanics with an Introduction to the Finite Element Method / Steve Barry; Manfred Staat. With extensions by Manfred Staat.}, year = {2006}, abstract = {Contents: 1 Introduction 2 One Dimensional Continuum Mechanics 3 Tensors 4 Three Dimensional Stress and Strain 5 Conservation Laws 6 Contiunuum Modelling 7 Plain Problems 8 Questions 9 Reference Information}, subject = {Technische Mechanik}, language = {en} } @inproceedings{StaatBallmann1989, author = {Staat, Manfred and Ballmann, J.}, title = {Fundamental aspects of numerical methods for the propagation of multi-dimensional nonlinear waves in solids}, series = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, booktitle = {Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen}, pages = {574 -- 588}, year = {1989}, abstract = {The nonlinear scalar constitutive equations of gases lead to a change in sound speed from point to point as would be found in linear inhomogeneous (and time dependent) media. The nonlinear tensor constitutive equations of solids introduce the additional local effect of solution dependent anisotropy. The speed of a wave passing through a point changes with propagation direction and its rays are inclined to the front. It is an open question whether the widely used operator splitting techniques achieve a dimensional splitting with physically reasonable results for these multi-dimensional problems. May be this is the main reason why the theoretical and numerical investigations of multi-dimensional wave propagation in nonlinear solids are so far behind gas dynamics. We hope to promote the subject a little by a discussion of some fundamental aspects of the solution of the equations of nonlinear elastodynamics. We use methods of characteristics because they only integrate mathematically exact equations which have a direct physical interpretation.}, subject = {Nichtlineare Welle}, language = {en} } @article{StaatBallmann1988, author = {Staat, Manfred and Ballmann, J.}, title = {Computation of impacts on elastic solids by methods of bicharacteristics}, series = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, journal = {Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2}, pages = {1719 -- 1722}, year = {1988}, abstract = {Shock waves, explosions, impacts or cavitation bubble collapses may generate stress waves in solids causing cracks or unexpected dammage due to focussing, physical nonlinearity or interaction with existing cracks. There is a growing interest in wave propagation, which poses many novel problems to experimentalists and theorists.}, subject = {Bicharakteristikenverfahren}, language = {en} } @article{Staat2004, author = {Staat, Manfred}, title = {Plastic collapse analysis of longitudinally flawed pipes and vessels}, year = {2004}, abstract = {Improved collapse loads of thick-walled, crack containing pipes and vessels are suggested. Very deep cracks have a residual strength which is better modelled by a global limit load. In all burst tests, the ductility of pressure vessel steels was sufficiently high whereby the burst pressure could be predicted by limit analysis with no need to apply fracture mechanics. The relative prognosis error increases however, for long and deep defects due to uncertainties of geometry and strength data.}, subject = {Druckbeh{\"a}lter}, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Direct FEM Limit and Shakedown Analysis with Uncertain Data}, year = {2000}, abstract = {The structural reliability with respect to plastic collapse or to inadaptation is formulated on the basis of the lower bound limit and shakedown theorems. A direct definition of the limit state function is achieved which permits the use of the highly effective first order reliability methods (FORM) is achieved. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. The limit state function and its gradient are obtained from a mathematical optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error, leading to highly effective and precise reliability analyses.}, subject = {Finite-Elemente-Methode}, language = {en} } @misc{Staat2006, author = {Staat, Manfred}, title = {Engineering Mechanics. Lecture Notes. 2nd edition, translation of the 3rd corrected and extended German edition of "Technische Mechanik"}, year = {2006}, abstract = {English translation of the corrected lectures notes of Sebastian Kr{\"a}mer. Contents 0 Introduction to Mechanics 1 Statics of Rigid Bodies 2 Elastostatics (Strength of Materials) 3 Kinematics 4 Kinetics Literature}, subject = {Technische Mechanik}, language = {en} } @inproceedings{Staat2006, author = {Staat, Manfred}, title = {Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability. - {\"U}berarb. Ausg.}, year = {2006}, abstract = {In: Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994. - Vienna , 1996. - Seite: 43 - 55 IAEA-TECDOC-920 Abstract: It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demon­strated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several addi­tional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings.}, subject = {Bruchmechanik}, language = {en} } @article{Staat2001, author = {Staat, Manfred}, title = {Cyclic plastic deformation tests to verify FEM-based shakedown analyses}, year = {2001}, abstract = {Fatigue analyses are conducted with the aim of verifying that thermal ratcheting is limited. To this end it is important to make a clear distintion between the shakedown range and the ratcheting range (continuing deformation). As part of an EU-supported research project, experiments were carried out using a 4-bar model. The experiment comprised a water-cooled internal tube, and three insulated heatable outer test bars. The system was subjected to alternating axial forces, superimposed with alternating temperatures at the outer bars. The test parameters were partly selected on the basis of previous shakedown analyses. During the test, temperatures and strains were measured as a function of time. The loads and the resulting stresses were confirmed on an ongoing basis during performance of the test, and after it. Different material models were applied for this incremental elasto-plastic analysis using the ANSYS program. The results of the simulation are used to verify the FEM-based shakedown analysis.}, subject = {Materialerm{\"u}dung}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels}, year = {2005}, abstract = {Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.}, subject = {Finite-Elemente-Methode}, language = {en} } @article{Staat2005, author = {Staat, Manfred}, title = {Direct finite element route for design-by-analysis of pressure components}, year = {2005}, abstract = {In the new European standard for unfired pressure vessels, EN 13445-3, there are two approaches for carrying out a Design-by-Analysis that cover both the stress categorization method (Annex C) and the direct route method (Annex B) for a check against global plastic deformation and against progressive plastic deformation. This paper presents the direct route in the language of limit and shakedown analysis. This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for mechanical and thermal actions. One observation from the examples is that the so-called 3f (3Sm) criterion fails to be a reliable check against progressive plastic deformation. Precise conditions are given, which greatly restrict the applicability of the 3f criterion.}, subject = {Einspielen }, language = {en} } @article{Staat2003, author = {Staat, Manfred}, title = {Shakedown and ratchetting under tension-torsion loadings: analysis and experiments}, year = {2003}, abstract = {Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis.}, subject = {Einspielen }, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material}, year = {2000}, abstract = {Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto-plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening.}, subject = {Finite-Elemente-Methode}, language = {en} } @inproceedings{Staat2003, author = {Staat, Manfred}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, year = {2003}, abstract = {This paper presents the direct route to Design by Analysis (DBA) of the new European pressure vessel standard in the language of limit and shakedown analysis (LISA). This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for some examples from the DBA-Manual. One observation from the examples is, that the optimisation approach gives reliable and close lower bound solutions leading to simple and optimised design decision.}, language = {en} } @article{Staat2001, author = {Staat, Manfred}, title = {LISA - a European project for FEM-based limit and shakedown analysis}, year = {2001}, abstract = {The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples.}, subject = {Einspielen }, language = {en} } @inproceedings{SrivastavaSinghDhandetal.2006, author = {Srivastava, Alok and Singh, Virendra and Dhand, Chetna and Kaur, Manindar and Singh, Tejvir and Witte, Katrin and Scherer, Ulrich W.}, title = {Study of swift heavy ion modified conduction polymer composites for application as gas sensor}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1345}, year = {2006}, abstract = {A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.}, subject = {Biosensor}, language = {en} } @inproceedings{SpannhakeSchulzHelwigetal.2006, author = {Spannhake, Jan and Schulz, Olaf and Helwig, Andreas and Krenkow, Angelika and M{\"u}ller, Gerhard and Doll, Theodor}, title = {High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1513}, year = {2006}, abstract = {Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing nondispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.}, subject = {Biosensor}, language = {en} } @article{SildatkeKarwanniKraftetal.2023, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {A distributed microservice architecture pattern for the automated generation of information extraction pipelines}, series = {SN Computer Science}, journal = {SN Computer Science}, number = {4, Article number: 833}, publisher = {Springer Singapore}, address = {Singapore}, issn = {2661-8907}, doi = {10.1007/s42979-023-02256-4}, pages = {19 Seiten}, year = {2023}, abstract = {Companies often build their businesses based on product information and therefore try to automate the process of information extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of the different document types. This paper provides a distributed microservice architecture pattern that enables the automated generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated quality determination of each available pipeline and controls the integration of new microservices based on their impact on the business value. The introduced system enables fast prototyping of the newest approaches from research and supports companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated pipelines always meet defined business requirements when they come into productive use.}, language = {en} } @article{SeifarthSchehlLinderetal.2011, author = {Seifarth, Volker and Schehl, D. and Linder, Peter and Gossmann, Matthias and Digel, Ilya and Artmann, Gerhard and Porst, Dariusz and Preiß, C. and Kayser, Peter and Pack, O. and Temiz Artmann, Ayseg{\"u}l}, title = {Ureplace: development of a bioreactor for in vitro culturing of cell seeded tubular vessels on collagen scaffolds}, year = {2011}, abstract = {The demand of replacements for inoperable organs exceeds the amount of available organ transplants. Therefore, tissue engineering developed as a multidisciplinary field of research for autologous in-vitro organs. Such three dimensional tissue constructs request the application of a bioreactor. The UREPLACE bioreactor is used to grow cells on tubular collagen scaffolds OPTIMAIX Sponge 1 with a maximal length of 7 cm, in order to culture in vitro an adequate ureter replacement. With a rotating unit, (urothelial) cells can be placed homogeneously on the inner scaffold surface. Furthermore, a stimulation is combined with this bioreactor resulting in an orientation of muscle cells. These culturing methods request a precise control of several parameters and actuators. A combination of a LabBox and the suitable software LabVision is used to set and conduct parameters like rotation angles, velocities, pressures and other important cell culture values. The bioreactor was tested waterproof successfully. Furthermore, the temperature controlling was adjusted to 37 °C and the CO2 - concentration regulated to 5 \%. Additionally, the pH step responses of several substances showed a perfect functioning of the designed flow chamber. All used software was tested and remained stable for several days.}, subject = {Tissue Engineering}, language = {en} } @inproceedings{SchoeningAbdelghani2012, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Nanoscale Science and Technology (NS\&T'12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3544}, year = {2012}, abstract = {Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in "Nanoscale Science and Technology" (NS\&T'12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS\&T'12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Sch{\"o}ning, Prof. Dr. Adnane Abdelghani}, subject = {Biosensor}, language = {en} } @inproceedings{SchoeningAbdelghani2009, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>: Proceedings book ; Tunisia, November, 13 \& 14, 2009 / Humboldt Kolleg. Ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, organization = {Humboldt-Kolleg Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3113}, year = {2009}, abstract = {The ANM'09 multi-disciplinary scientific program includes topics in the fields of "Nanotechnology and Microelectronics" ranging from "Bio/Micro/Nano Materials and Interfacing" aspects, "Chemical and Bio-Sensors", "Magnetic and Superconducting Devices", "MEMS and Microfluidics" over "Theoretical Aspects, Methods and Modelling" up to the important bridging "Academics meet Industry".}, subject = {Nanopartikel}, language = {en} } @inproceedings{SchreiberKraftZuendorf2017, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously}, series = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, booktitle = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, pages = {8 Seiten}, year = {2017}, abstract = {Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements. In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner's business model. This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal. An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time.}, language = {en} } @inproceedings{SakthivelWeppner2006, author = {Sakthivel, Mariappan and Weppner, Werner}, title = {Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1399}, year = {2006}, abstract = {A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10\% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX.}, subject = {Biosensor}, language = {en} } @article{RoethenbacherCesariDoppleretal.2022, author = {R{\"o}thenbacher, Annika and Cesari, Matteo and Doppler, Christopher E.J. and Okkels, Niels and Willemsen, Nele and Sembowski, Nora and Seger, Aline and Lindner, Marie and Brune, Corinna and Stefani, Ambra and H{\"o}gl, Birgit and Bialonski, Stephan and Borghammer, Per and Fink, Gereon R. and Schober, Martin and Sommerauer, Michael}, title = {RBDtector: an open-source software to detect REM sleep without atonia according to visual scoring criteria}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 20886}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-25163-9}, pages = {1 -- 14}, year = {2022}, abstract = {REM sleep without atonia (RSWA) is a key feature for the diagnosis of rapid eye movement (REM) sleep behaviour disorder (RBD). We introduce RBDtector, a novel open-source software to score RSWA according to established SINBAR visual scoring criteria. We assessed muscle activity of the mentalis, flexor digitorum superficialis (FDS), and anterior tibialis (AT) muscles. RSWA was scored manually as tonic, phasic, and any activity by human scorers as well as using RBDtector in 20 subjects. Subsequently, 174 subjects (72 without RBD and 102 with RBD) were analysed with RBDtector to show the algorithm's applicability. We additionally compared RBDtector estimates to a previously published dataset. RBDtector showed robust conformity with human scorings. The highest congruency was achieved for phasic and any activity of the FDS. Combining mentalis any and FDS any, RBDtector identified RBD subjects with 100\% specificity and 96\% sensitivity applying a cut-off of 20.6\%. Comparable performance was obtained without manual artefact removal. RBD subjects also showed muscle bouts of higher amplitude and longer duration. RBDtector provides estimates of tonic, phasic, and any activity comparable to human scorings. RBDtector, which is freely available, can help identify RBD subjects and provides reliable RSWA metrics.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bj{\"o}rn and St{\"a}udle, Benjamin and Attias, Julia and S{\"u}ss, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, J{\"o}rn and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {Article number: 22555}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-00527-9}, pages = {13 Seiten}, year = {2021}, abstract = {The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @inproceedings{RabnerShacham2006, author = {Rabner, Arthur and Shacham, Yosi}, title = {A concept for a sensitive micro total analysis system for high throughput fluorescence imaging}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1456}, year = {2006}, abstract = {This paper discusses possible methods for on-chip fluorescent imaging for integrated bio-sensors. The integration of optical and electro-optical accessories, according to suggested methods, can improve the performance of fluorescence imaging. It can boost the signal to background ratio by a few orders of magnitudes in comparison to conventional discrete setups. The methods that are present in this paper are oriented towards building reproducible arrays for high-throughput micro total analysis systems (µTAS). The first method relates to side illumination of the fluorescent material placed into microcompartments of the lab-on-chip. Its significance is in high utilization of excitation energy for low concentration of fluorescent material. The utilization of a transparent µLED chip, for the second method, allows the placement of the excitation light sources on the same optical axis with emission detector, such that the excitation and emission rays are directed controversly. The third method presents a spatial filtering of the excitation background.}, subject = {Biosensor}, language = {en} } @article{PreissLinderWendtetal.2011, author = {Preiß, C. and Linder, Peter and Wendt, K. and Krystek, M. and Digel, Ilya and Gossmann, Matthias and Temiz Artmann, Ayseg{\"u}l and Porst, Dariusz and Kayser, Peter and Bassam, Rasha and Artmann, Gerhard}, title = {Engineering technology for plant physiology and plant stress research}, year = {2011}, abstract = {Plant physiology and plant stress: Plant physiology will be much more important for human mankind because of yield and cultivation limits of crops determined by their resistance to stress. To assess and counteract various stress factors it is necessary to conduct plant research to gain information and results on plant physiology.}, subject = {Pflanzenphysiologie}, language = {en} } @inproceedings{PoghossianSchumacherKloocketal.2006, author = {Poghossian, Arshak and Schumacher, Kerstin and Kloock, Joachim P. and Rosenkranz, Christian and Schultze, Joachim W. and M{\"u}ller-Veggian, Mattea and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of ISFETs on wafer level by means of a micro-droplet cell}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1259}, year = {2006}, abstract = {A wafer-level functionality testing and characterisation system for ISFETs (ionsensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of "good" ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for nonfunctioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors.}, subject = {Biosensor}, language = {en} } @inproceedings{PlatenPoghossianSchoening2006, author = {Platen, Johannes and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Microstructured Nanostructures - nanostructuring by means of conventional photolithography and layer-expansion technique}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1477}, year = {2006}, abstract = {A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, "fluidic-channel"-, "cantilever"- and meander-type structures.}, subject = {Biosensor}, language = {en} }