@article{AchtsnichtToedterNiehuesetal.2019, author = {Achtsnicht, Stefan and T{\"o}dter, Julia and Niehues, Julia and Tel{\"o}ken, Matthias and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19010148}, pages = {15 Seiten}, year = {2019}, abstract = {For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.}, language = {en} } @article{BhattaraiStaat2019, author = {Bhattarai, Aroj and Staat, Manfred}, title = {A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse}, series = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, publisher = {Taylor \& Francis}, address = {London}, issn = {2168-1171}, doi = {10.1080/21681163.2019.1670095}, year = {2019}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @article{LeschingerBirgelHackletal.2019, author = {Leschinger, Tim and Birgel, Stefan and Hackl, Michael and Staat, Manfred and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {A musculoskeletal shoulder simulation of moment arms and joint reaction forces after medialization of the supraspinatus footprint in rotator cuff repair}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {Early view}, publisher = {Taylor \& Francis}, address = {London}, doi = {10.1080/10255842.2019.1572749}, year = {2019}, language = {en} } @article{LinderBecklerDoerretal.2019, author = {Linder, Peter and Beckler, Matthias and Doerr, Leo and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Staat, Manfred and Gossmann, Matthias}, title = {A new in vitro tool to investigate cardiac contractility under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {99}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article number 106595}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1056-8719}, doi = {10.1016/j.vascn.2019.05.162}, year = {2019}, language = {en} } @inproceedings{SiebigterothKraftSchmidtsetal.2019, author = {Siebigteroth, Ines and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {A Study on Improving Corpus Creation by Pair Annotation}, series = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, booktitle = {Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019)}, issn = {1613-0073}, pages = {40 -- 44}, year = {2019}, language = {en} } @article{KetelhutKolditzGoelletal.2019, author = {Ketelhut, Maike and Kolditz, Melanie and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Admittance control of an industrial robot during resistance training}, series = {IFAC-PapersOnLine}, volume = {52}, journal = {IFAC-PapersOnLine}, number = {19}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2019.12.102}, pages = {223 -- 228}, year = {2019}, abstract = {Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories.}, language = {en} } @article{SavitskayaKistaubayevaIgnatovaetal.2019, author = {Savitskaya, I.S. and Kistaubayeva, A.S. and Ignatova, L.V. and Digel, Ilya}, title = {Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells}, series = {Heliyon}, volume = {5}, journal = {Heliyon}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8440}, doi = {10.1016/j.heliyon.2019.e02592}, pages = {Artikelnummer e02592}, year = {2019}, language = {en} } @article{Stulpe2019, author = {Stulpe, Werner}, title = {Aspects of the Quantum-Classical Connection Based on Statistical Maps}, series = {Foundations of Physics}, volume = {49}, journal = {Foundations of Physics}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s10701-019-00269-9}, pages = {677 -- 692}, year = {2019}, language = {en} } @phdthesis{Engelmann2019, author = {Engelmann, Ulrich M.}, title = {Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy}, publisher = {Infinite Science Publishing}, address = {L{\"u}beck}, isbn = {978-3-945954-58-4}, year = {2019}, language = {en} } @article{KromeHoeftSander2019, author = {Krome, Cornelia and H{\"o}ft, Jan and Sander, Volker}, title = {Clustering time series applied to energy markets}, series = {Energy Informatics}, volume = {2}, journal = {Energy Informatics}, number = {Article numer 17}, publisher = {Springer}, address = {Berlin}, issn = {2520-8942}, doi = {10.1186/s42162-019-0076-0}, pages = {1 -- 20}, year = {2019}, language = {en} } @article{ArreolaKeusgenWagneretal.2019, author = {Arreola, Julio and Keusgen, Michael and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines}, series = {Biosensors and Bioelectronics}, volume = {143}, journal = {Biosensors and Bioelectronics}, number = {111628}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.111628}, year = {2019}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @article{MennickenPeterKaulenetal.2019, author = {Mennicken, Max and Peter, Sophia Katharina and Kaulen, Corinna and Simon, Ulrich and Karth{\"a}user, Silvia}, title = {Controlling the Electronic Contact at the Terpyridine/Metal Interface}, series = {The Journal of Physical Chemistry C}, volume = {123}, journal = {The Journal of Physical Chemistry C}, number = {35}, issn = {1932-7455}, doi = {10.1021/acs.jpcc.9b05865}, pages = {21367 -- 21375}, year = {2019}, language = {en} } @article{IkenBronderGoretzkietal.2019, author = {Iken, Heiko and Bronder, Thomas and Goretzki, Alexander and Kriesel, Jana and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Willi and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900114}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{HunkerJungGossmannetal.2019, author = {Hunker, Jan and Jung, Alexander and Goßmann, Matthias and Linder, Peter and Staat, Manfred}, title = {Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {7 -- 8}, year = {2019}, abstract = {The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool.}, language = {en} } @article{JildehKirchnerBaltesetal.2019, author = {Jildeh, Zaid B. and Kirchner, Patrick and Baltes, Klaus and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of an in-line evaporation unit for the production of gas mixtures containing hydrogen peroxide - numerical modeling and experimental results}, series = {International Journal of Heat and Mass Transfer}, volume = {143}, journal = {International Journal of Heat and Mass Transfer}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0017-9310}, doi = {10.1016/j.ijheatmasstransfer.2019.118519}, pages = {Article number 118519}, year = {2019}, abstract = {Hydrogen peroxide (H2O2) is a typical surface sterilization agent for packaging materials used in the pharmaceutical, food and beverage industries. We use the finite-elements method to analyze the conceptual design of an in-line thermal evaporation unit to produce a heated gas mixture of air and evaporated H2O2 solution. For the numerical model, the required phase-transition variables of pure H2O2 solution and of the aerosol mixture are acquired from vapor-liquid equilibrium (VLE) diagrams derived from vapor-pressure formulations. This work combines homogeneous single-phase turbulent flow with heat-transfer physics to describe the operation of the evaporation unit. We introduce the apparent heat-capacity concept to approximate the non-isothermal phase-transition process of the H2O2-containing aerosol. Empirical and analytical functions are defined to represent the temperature- and pressure-dependent material properties of the aqueous H2O2 solution, the aerosol and the gas mixture. To validate the numerical model, the simulation results are compared to experimental data on the heating power required to produce the gas mixture. This shows good agreement with the deviations below 10\%. Experimental observations on the formation of deposits due to the evaporation of stabilized H2O2 solution fits the prediction made from simulation results.}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Distinct muscle-tendon interaction during running at different speeds and in different loading conditions}, series = {Journal of Applied Physiology}, volume = {127}, journal = {Journal of Applied Physiology}, number = {1}, issn = {1522-1601}, doi = {10.1152/japplphysiol.00710.2018}, pages = {246 -- 253}, year = {2019}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @inproceedings{HingleyDikta2019, author = {Hingley, Peter and Dikta, Gerhard}, title = {Finding a well performing box-jenkins forecasting model for annualised patent filings counts}, series = {International Symposium on Forecasting, Thessaloniki, Greece, June 2019}, booktitle = {International Symposium on Forecasting, Thessaloniki, Greece, June 2019}, pages = {24 Folien}, year = {2019}, language = {en} } @article{EngelmannSeifertMuesetal.2019, author = {Engelmann, Ulrich M. and Seifert, Julian and Mues, Benedikt and Roitsch, Stefan and M{\´e}nager, Christine and Schmidt, Annette M. and Slabu, Ioana}, title = {Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.113}, pages = {486 -- 494}, year = {2019}, language = {en} } @article{MoraisSilvaDantasetal.2019, author = {Morais, Paulo V. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Hybrid Layer-by-Layer Film of Polyelectrolytes-Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte-Insulator-Semiconductor Devices}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {1900044}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/pssa.201900044}, pages = {1 -- 9}, year = {2019}, language = {en} } @article{BleilevensHillGrzannaetal.2019, author = {Bleilevens, Christian and Hill, Aileen and Grzanna, Tim and Fechter, Tamara and Bohnen, Melanie and Weber, Hans-Joachim and Beckers, Christian and Borosch, Sebastian and Zayat, Rashad and Benstoem, Carin and Rossaint, Rolf and Goetzenich, Andreas}, title = {In vitro head-to-head comparison of anticoagulation properties of two heparin brands in a human blood miniature mock loop}, series = {Interactive cardiovascular and thoracic surgery}, volume = {28}, journal = {Interactive cardiovascular and thoracic surgery}, number = {1}, issn = {1569-9285}, doi = {10.1093/icvts/ivy206}, pages = {120 -- 127}, year = {2019}, language = {en} } @article{LeschingerBeschAydinetal.2019, author = {Leschinger, Tim and Besch, Katharina and Aydin, Cansu and Staat, Manfred and Scaal, Martin and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Irreparable rotator cuff tears: a biomechanical comparison of superior capsuloligamentous complex reconstruction techniques and an interposition graft technique}, series = {The Orthopaedic Journal of Sports Medicine}, volume = {7}, journal = {The Orthopaedic Journal of Sports Medicine}, number = {8}, doi = {10.1177/2325967119864590}, pages = {1 -- 5}, year = {2019}, language = {en} } @inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @article{MeyerGaalenLeschingeretal.2019, author = {Meyer, Carolin and Gaalen, Kerstin van and Leschinger, Tim and Scheyerer, Max J. and Neiss, Wolfram F. and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement}, series = {BioMed Research International}, journal = {BioMed Research International}, doi = {10.1155/2019/9232813}, pages = {Article ID 9232813}, year = {2019}, language = {en} } @phdthesis{Tran2019, author = {Tran, Ngoc Trinh}, title = {Limit and Shakedown analysis of structures under stochastic conditions}, publisher = {Technische Universit{\"a}t Braunschweig}, address = {Braunschweig}, doi = {10.24355/dbbs.084-201902121135-0}, pages = {166 S.}, year = {2019}, language = {en} } @article{RoethSlabuKessleretal.2019, author = {Roeth, A.A. and Slabu, I. and Kessler, A. and Engelmann, Ulrich M.}, title = {Local treatment of pancreatic cancer with magnetic nanoparticles}, series = {HPB}, volume = {21}, journal = {HPB}, number = {Supplement 3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1365-182X}, doi = {10.1016/j.hpb.2019.10.959}, pages = {S868 -- S869}, year = {2019}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @article{JungStaat2019, author = {Jung, Alexander and Staat, Manfred}, title = {Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue}, series = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, volume = {42}, journal = {GAMM - Mitteilungen der Gesellschaft f{\"u}r Angewandte Mathematik und Mechanik}, number = {4}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.201900002}, pages = {11 Seiten}, year = {2019}, language = {en} } @article{SlabuRoethEngelmannetal.2019, author = {Slabu, Ioana and Roeth, Anjali A. and Engelmann, Ulrich M. and Wiekhorst, Frank and Buhl, Eva M. and Neumann, Ulf P. and Schmitz-Rode, Thomas}, title = {Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro}, series = {Nanotechnology}, volume = {30}, journal = {Nanotechnology}, number = {18}, issn = {1361-6528}, doi = {10.1088/1361-6528/ab033e}, pages = {184004}, year = {2019}, language = {en} } @inproceedings{RamanJungHorvathetal.2019, author = {Raman, Aravind Hariharan and Jung, Alexander and Horv{\´a}th, Andr{\´a}s and Becker, Nadine and Staat, Manfred}, title = {Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {10 -- 11}, year = {2019}, abstract = {Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich).}, language = {en} } @article{AlbannaLuekeSchubertetal.2019, author = {Albanna, Walid and L{\"u}ke, Jan Niklas and Schubert, Gerrit Alexander and Dibu{\´e}-Adjei, Maxine and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Steiger, Hans-Jakob and H{\"a}nggi, Daniel and Kamp, Marcel A. and Schneider, Toni and Neumaier, Felix}, title = {Modulation of Ca v 2.3 channels by unconjugated bilirubin (UCB) - Candidate mechanism for UCB-induced neuromodulation and neurotoxicity}, series = {Molecular and Cellular Neuroscience}, volume = {96}, journal = {Molecular and Cellular Neuroscience}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1044-7431}, doi = {10.1016/j.mcn.2019.03.003}, pages = {35 -- 46}, year = {2019}, language = {en} } @article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} } @article{KarschuckFilipovBollellaetal.2019, author = {Karschuck, T. L. and Filipov, Y. and Bollella, P. and Sch{\"o}ning, Michael Josef and Katz, E.}, title = {Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction}, series = {International Journal of Unconventional Computing}, volume = {14}, journal = {International Journal of Unconventional Computing}, number = {3-4}, publisher = {Old City Publishing}, address = {Philadelphia}, issn = {1548-7199}, pages = {235 -- 242}, year = {2019}, abstract = {Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular "toolbox" as a new example of Boolean logic gates based on enzyme reactions.}, language = {en} } @article{Gaigall2019, author = {Gaigall, Daniel}, title = {On a new approach to the multi-sample goodness-of-fit problem}, series = {Communications in Statistics - Simulation and Computation}, volume = {53}, journal = {Communications in Statistics - Simulation and Computation}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-4141}, doi = {10.1080/03610918.2019.1618472}, pages = {2971 -- 2989}, year = {2019}, abstract = {Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions.}, language = {en} } @article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @article{JungMuellerStaat2019, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Optimization of the flight technique in ski jumping: the influence of wind}, number = {Early view}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.jbiomech.2019.03.023}, year = {2019}, language = {en} } @article{JayaramanMummidisettyLoeschetal.2019, author = {Jayaraman, Chandrasekaran and Mummidisetty, Chaitanya Krishna and Loesch, Alexandra and Kaur, Sandi and Hoppe-Ludwig, Shenan and Staat, Manfred and Jayaraman, Arun}, title = {Postural and metabolic benefits of using a forearm support walker in older adults with impairments}, series = {Archives of Physical Medicine and Rehabilitation}, volume = {Volume 100}, journal = {Archives of Physical Medicine and Rehabilitation}, number = {Issue 4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-9993}, doi = {10.1016/j.apmr.2018.10.001}, pages = {638 -- 647}, year = {2019}, language = {en} } @article{EngelmannShashaTeemanetal.2019, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Teeman, Eric and Slabu, Iona and Krishnan, Kannan M.}, title = {Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic N{\´e}el-Brown Langevin simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {471}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.09.041}, pages = {450 -- 456}, year = {2019}, language = {en} } @article{KoppSchmeetsGosauetal.2019, author = {Kopp, Alexander and Schmeets, Ralf and Gosau, Martin and Friedrich, Reinhard E. and Fuest, Sandra and Behbahani, Mehdi and Barbeck, Mike and Rutkowski, Rico and Burg, Simon and Kluwe, Lan and Henningsen, Anders}, title = {Production and Characterization of Porous Fibroin Scaffolds for Regenerative Medical Application}, series = {In Vivo}, volume = {33}, journal = {In Vivo}, number = {3}, issn = {1791-7549}, doi = {10.21873/invivo.11536}, pages = {757 -- 762}, year = {2019}, language = {en} } @article{DantismRoehlenSelmeretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Selmer, Thorsten and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system}, series = {Biosensors and Bioelectronics}, volume = {139}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2019.111332}, pages = {Artikel 111332}, year = {2019}, language = {en} } @article{PoghossianGeisslerSchoening2019, author = {Poghossian, Arshak and Geissler, Hanno and Sch{\"o}ning, Michael Josef}, title = {Rapid methods and sensors for milk quality monitoring and spoilage detection}, series = {Biosensors and Bioelectronics}, volume = {140}, journal = {Biosensors and Bioelectronics}, number = {Article 111272}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.040}, year = {2019}, language = {en} } @inproceedings{ZingsheimGrimmerOrtneretal.2019, author = {Zingsheim, Jonas and Grimmer, Timo and Ortner, Marion and Schmaderer, Christoph and Hauser, Christine and Kotliar, Konstantin}, title = {Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels.}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {36 -- 37}, year = {2019}, language = {en} } @article{CapriMorsianiSantoroetal.2019, author = {Capri, Miriam and Morsiani, Cristina and Santoro, Aurelia and Moriggi, Manuela and Conte, Maria and Martucci, Morena and Bellavista, Elena and Fabbri, Cristina and Giampieri, Enrico and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Canepari, Monica and Longa, Emanuela and Giulio, Irene Di and Bottinelli, Roberto and Cerretelli, Paolo and Salvioli, Stefano and Gelfi, Cecilia and Franceschi, Claudio and Narici, Marco and Rittweger, J{\"o}rn}, title = {Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting}, series = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, volume = {33}, journal = {The FASEB journal : official publication of the Federation of American Societies for Experimental Biology}, number = {4}, doi = {10.1096/fj.201801625R}, pages = {5168 -- 5180}, year = {2019}, language = {en} } @article{QuittmannAbelAlbrachtetal.2019, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants}, series = {Sports Biomechanics}, journal = {Sports Biomechanics}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116}, doi = {10.1080/14763141.2019.1593496}, year = {2019}, language = {en} } @inproceedings{SchmidtsKraftSiebigterothetal.2019, author = {Schmidts, Oliver and Kraft, Bodo and Siebigteroth, Ines and Z{\"u}ndorf, Albert}, title = {Schema Matching with Frequent Changes on Semi-Structured Input Files: A Machine Learning Approach on Biological Product Data}, series = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, booktitle = {Proceedings of the 21st International Conference on Enterprise Information Systems - Volume 1: ICEIS}, isbn = {978-989-758-372-8}, doi = {10.5220/0007723602080215}, pages = {208 -- 215}, year = {2019}, language = {en} } @article{PilasSelmerKeusgenetal.2019, author = {Pilas, Johanna and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array}, series = {Analytical Chemistry}, volume = {91}, journal = {Analytical Chemistry}, number = {23}, publisher = {ACS Publications}, address = {Washington}, doi = {10.1021/acs.analchem.9b04481}, pages = {15293 -- 15299}, year = {2019}, language = {en} } @article{AchtsnichtNeuendorfFassbenderetal.2019, author = {Achtsnicht, Stefan and Neuendorf, Christian and Faßbender, Tobias and N{\"o}lke, Greta and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection}, series = {Plos One}, volume = {14}, journal = {Plos One}, number = {7}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219356}, pages = {e0219356}, year = {2019}, abstract = {Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin's B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml.}, language = {en} }