@article{PoghossianSchoening2003, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {"High-order" hybrid FET module for (bio)chemical and physical sensing}, series = {Integrated analytical systems / ed. by Salvador Alegret}, journal = {Integrated analytical systems / ed. by Salvador Alegret}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, isbn = {0-444-51037-0}, pages = {587 -- 623}, year = {2003}, language = {en} } @article{Schoening2005, author = {Sch{\"o}ning, Michael Josef}, title = {"Playing around" with field-effect sensors on the basis of EIS structures, LAPS and ISFETs}, series = {Sensors. 5 (2005), H. 3}, journal = {Sensors. 5 (2005), H. 3}, isbn = {1424-8220}, pages = {126 -- 138}, year = {2005}, language = {en} } @article{Schoening2004, author = {Sch{\"o}ning, Michael Josef}, title = {"Voltohmmetry" - a new transducer principle for electrochemical sensors}, series = {Ultrathin electrochemical chemo- and biosensors : technology and performance / Vladimir M. Mirsky}, journal = {Ultrathin electrochemical chemo- and biosensors : technology and performance / Vladimir M. Mirsky}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-21285-X}, pages = {117 -- 140}, year = {2004}, language = {en} } @article{BuniatyanMatirosyanAbouzaretal.2009, author = {Buniatyan, V. V. and Matirosyan, N. W. and Abouzar, Maryam H. and Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Schubert, J. and Khachatryan, V. R. and Soukiassyan, G. R.}, title = {(Ba,Sr)TiO3 based electrolyte-insulator-semiconductor pHsensors: comparitive study}, series = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, journal = {Semiconductor micro- and nanoelectronics : Proceedings of the Seventh International Conference , Tsakhcadzor, Armenia July 3-5 2009}, pages = {71 -- 74}, year = {2009}, language = {en} } @article{PoghossianLuethSchultzeetal.2001, author = {Poghossian, Arshak and L{\"u}th, H. and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical and physical microsensor array using an identical transducer principle}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {243 -- 249}, year = {2001}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @inproceedings{RoderburgSchoening2008, author = {Roderburg, Katharina and Sch{\"o}ning, Michael Josef}, title = {1. Graduierten-Tagung : 9. September 2008 / [Hrsg.: K. Roderburg ; M. J. Sch{\"o}ning]}, organization = {FH Aachen, University of Applied Sciences / Graduiertentagung <1, 2008>}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3125}, year = {2008}, abstract = {Tagungsband der Graduiertentagung der FH Aachen, in dem Doktorandinnen und Doktoranden und ihre Forschungsbereiche vorgestellt werden}, subject = {Aachen / Fachhochschule Aachen}, language = {de} } @inproceedings{SchubertSchoening2010, author = {Schubert, Nicole and Sch{\"o}ning, Michael Josef}, title = {3. Graduiertentagung der FH Aachen}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3386}, year = {2010}, abstract = {Doktoranden der FH Aachen stellen ihre wissenschaftlichen Arbeiten aus verschiedenen Fachdisziplinen vor.}, subject = {Graduiertentagung}, language = {mul} } @article{AchtsnichtToedterNiehuesetal.2019, author = {Achtsnicht, Stefan and T{\"o}dter, Julia and Niehues, Julia and Tel{\"o}ken, Matthias and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19010148}, pages = {15 Seiten}, year = {2019}, abstract = {For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.}, language = {en} } @inproceedings{SchusserVaessenSchoening2011, author = {Schusser, Sebastian and Vaeßen, Christiane and Sch{\"o}ning, Michael Josef}, title = {4. Graduiertentagung der FH Aachen 24. November 2011}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3530}, year = {2011}, abstract = {Tagungsband der 4. Graduiertentagung der FH Aachen am 24. November 2011 Proceedings from the 4th Graduate Symposium, FH Aachen, Germany, November 24th, 2011 Aachen, November 2011. 62 Seiten}, subject = {Graduiertentagung}, language = {de} } @inproceedings{SchusserVaessenSchoening2012, author = {Schusser, Sebastian and Vaeßen, Christiane and Sch{\"o}ning, Michael Josef}, title = {5. Graduiertentagung der FH Aachen 15. November 2012}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-50425}, pages = {52}, year = {2012}, abstract = {Tagungsband der 5. Graduiertentagung der FH Aachen am 15. November 2012}, language = {de} } @article{SchoeningArzdorfMulchandanietal.2003, author = {Sch{\"o}ning, Michael Josef and Arzdorf, M. and Mulchandani, P. and Chen, W. and Mulchandani, A.}, title = {A capacitive field-effect sensor for the direct determination of organophosphorus pesticides}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {92 -- 97}, year = {2003}, language = {en} } @article{HaegerBongaertsSiegert2022, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent}, series = {Analytical Biochemistry}, journal = {Analytical Biochemistry}, number = {624}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1096-0309}, doi = {10.1016/j.ab.2022.114819}, pages = {Artikel 114819}, year = {2022}, abstract = {An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates.}, language = {en} } @article{BohrnMuchaWerneretal.2013, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and Trattner, Barbara and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and St{\"u}tz, Evamaria and Schmitt-Landsiedel, Doris and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {A critical comparison of cell-based sensor systems for the detection of Cr (VI) in aquatic environment}, series = {Sensors and actuators. B: Chemical}, volume = {Vol. 182}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, pages = {58 -- 65}, year = {2013}, language = {en} } @article{SchoeningKrauseBlocketal.2002, author = {Sch{\"o}ning, Michael Josef and Krause, R. and Block, K. and Musameh, M. and Mulchandani, A. and Wang, J.}, title = {A dual amperometric / potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides}, series = {Book of abstracts / ed. by J. Saneistr.}, journal = {Book of abstracts / ed. by J. Saneistr.}, publisher = {Czech Technical University, Faculty of Electrical Engineering, Department of Measurement}, address = {Prague}, isbn = {80-01-02576-4}, pages = {76 -- 79}, year = {2002}, language = {en} } @article{SchoeningKrauseBlocketal.2003, author = {Sch{\"o}ning, Michael Josef and Krause, R. and Block, K. and Musahmeh, M. and Mulchandani, A. and Wang, J.}, title = {A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides}, series = {Sensors and Actuators B. 95 (2003), H. 1-3}, journal = {Sensors and Actuators B. 95 (2003), H. 1-3}, isbn = {0925-4005}, pages = {291 -- 296}, year = {2003}, language = {en} } @article{SchiffelsSelmer2015, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro}, series = {Biotechnology and Bioengineering}, volume = {112}, journal = {Biotechnology and Bioengineering}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290}, doi = {10.1002/bit.25658}, pages = {2360 -- 2372}, year = {2015}, language = {en} } @article{WagnerSchoeningOttoetal.2004, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef and Otto, R. and Yoshinobu, T.}, title = {A handheld 16 channel pen-type LAPS as a platform for (bio-)electrochemical sensing}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {996 -- 997}, year = {2004}, language = {en} } @article{WagnerWernerMiyamotoetal.2009, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, K. and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {A high-density multi-point LAPS set-up using a VCSEL array and FPGA control}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1876-6196}, pages = {1483 -- 1486}, year = {2009}, language = {en} } @article{WagnerWernerMiyamotoetal.2011, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-Ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {A high-density multi-point LAPS set-up using a VCSEL array and FPGA control}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {124 -- 128}, year = {2011}, language = {en} } @article{MiyamotoHayashiSakamotoetal.2017, author = {Miyamoto, Ko-ichiro and Hayashi, Kosuke and Sakamoto, Azuma and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance}, series = {Sensor and Actuators B: Chemical}, volume = {248}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.03.002}, pages = {1006 -- 1010}, year = {2017}, abstract = {An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1\% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change.}, language = {en} } @article{DantismRoehlenWagneretal.2019, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19214692}, pages = {Artikel 4692}, year = {2019}, abstract = {Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process.}, language = {en} } @article{WagnerMolinaBisellietal.2007, author = {Wagner, Torsten and Molina, R. and Biselli, Manfred and Canzoneri, Michele and Schnitzler, Thomas and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {A light-addressable potentiometric sensor system for fast, simultaneous and spatial detection of the metabolic activity of biological cells}, series = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, journal = {Transducers '07 Eurosensors XXI : digest of technical papers ; the14th International Conference on Solid-State Sensors, Actuators and Microsystems, June 10-14, 2007, Lyon, France / Gilles Delapierre (Ed.)}, publisher = {IEEE}, address = {Piscataway}, isbn = {1-4244-0841-5}, pages = {1107 -- 1110}, year = {2007}, language = {en} } @article{SimonisRugeMuellerVeggianetal.2003, author = {Simonis, A. and Ruge, C. and M{\"u}ller-Veggian, Mattea and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {A long-term stable macroporoustype EIS structure for electrochemical sensor applications}, series = {Sensors and Actuators B. 91 (2003), H. 1-3}, journal = {Sensors and Actuators B. 91 (2003), H. 1-3}, isbn = {0925-4005}, pages = {21 -- 25}, year = {2003}, language = {en} } @article{MorenoiCodinachsBirkenstockGarmaetal.2009, author = {Moreno i Codinachs, L. and Birkenstock, C. and Garma, T. and Zierold, R. and Bachmann, J. and Nielsch, K. and Sch{\"o}ning, Michael Josef and Fontcuberta i Morral, A.}, title = {A micron-sized nanoporous multifunction sensing device}, series = {physica status solidi (a) . 206 (2009), H. 3}, journal = {physica status solidi (a) . 206 (2009), H. 3}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {435 -- 441}, year = {2009}, language = {en} } @article{NaetherAugerPoghossianetal.2004, author = {N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {A miniaturized flow-through cell in SU-8 technique for EIS sensors}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {994 -- 995}, year = {2004}, language = {en} } @inproceedings{ErmelenkoYoshinobuMourzinaetal.2003, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef and Vlasov, Y. and Iwasaki, H.}, title = {A multisensor based on laser scanned silicon transducer (LSST): development and properties}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {72 -- 73}, year = {2003}, language = {en} } @inproceedings{BaeckerKochGeigeretal.2016, author = {B{\"a}cker, Matthias and Koch, C. and Geiger, F. and Eber, F. and Gliemann, H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier}, series = {Procedia Engineering}, volume = {Vol. 168}, booktitle = {Procedia Engineering}, issn = {1877-7058}, doi = {10.1016/j.proeng.2016.11.228}, pages = {618 -- 621}, year = {2016}, language = {en} } @article{MourzinaSchoeningSchubertetal.2000, author = {Mourzina, Y.G. and Sch{\"o}ning, Michael Josef and Schubert, J. and Zander, W. and Legin, A. V. and Vlasov, Y. G. and Kordos, P. and L{\"u}th, H.}, title = {A new thin film Pb microsensor based on chalcogenide glasses}, series = {Sensors and Actuators B. 71 (2000), H. 1-2}, journal = {Sensors and Actuators B. 71 (2000), H. 1-2}, isbn = {0925-4005}, pages = {13 -- 18}, year = {2000}, language = {en} } @article{NaetherEmmerichBergeretal.2006, author = {N{\"a}ther, Niko and Emmerich, R{\"u}diger and Berger, J{\"o}rg and Friedrich, Peter and Henkel, Hartmut and Schneider, Andreas and Sch{\"o}ning, Michael Josef}, title = {A novel gas-phase hydrogen peroxide sensor basing on a combined physical/chemical transduction mechanism}, series = {Nanofunctional materials, nanostructures, and novel devices for biological and chemical detection : November 27 - December 1, 2006, Boston, Massachusetts, USA ; [at the 2006 MRS Fall Meeting].}, journal = {Nanofunctional materials, nanostructures, and novel devices for biological and chemical detection : November 27 - December 1, 2006, Boston, Massachusetts, USA ; [at the 2006 MRS Fall Meeting].}, publisher = {Materials Research Soc.}, address = {Warrendale, Pa.}, isbn = {978-1-60423-407-7}, pages = {63 -- 68}, year = {2006}, language = {en} } @article{HodelOrzatiMarsoetal.2000, author = {Hodel, U. and Orzati, A. and Marso, M. and Homann, O. and Fox, A. and Hart, A. v. d. and F{\"o}rster, Arnold and Kordos, P. and L{\"u}th, H.}, title = {A novel InAlAs/InGaAs layer structure for monolithically integrated photoreceiver}, series = {Conference Proceedings: 2000 International Conference on Indium Phosphide and related materials}, journal = {Conference Proceedings: 2000 International Conference on Indium Phosphide and related materials}, publisher = {IEEE Service Center}, address = {Piscataway, NJ}, isbn = {0-7803-6320-5}, pages = {466 -- 469}, year = {2000}, language = {en} } @article{AridaTurekRolkaetal.2009, author = {Arida, Hassan and Turek, Monika and Rolka, David and Sch{\"o}ning, Michael Josef}, title = {A Novel Thin-Film Copper Array Based on an Organic/Inorganic Sensor Hybrid: Microfabrication, Potentiometric Characterization, and Flow-Injection Analysis Application}, series = {Electroanalysis. 21 (2009), H. 10}, journal = {Electroanalysis. 21 (2009), H. 10}, publisher = {Wiley}, address = {Weinheim}, isbn = {1040-0397}, pages = {1145 -- 1151}, year = {2009}, language = {en} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} } @article{SchoeningBussFassbenderetal.2000, author = {Sch{\"o}ning, Michael Josef and Buß, G. and Faßbender, F. and Gl{\"u}ck, O. and Schmitt, G. and Schultze, J. W. and L{\"u}th, H.}, title = {A silicon-based microelectrode array for chemical analysis}, series = {Sensors and Actuators B. 65 (2000), H. 1-3}, journal = {Sensors and Actuators B. 65 (2000), H. 1-3}, isbn = {0925-4005}, pages = {284 -- 287}, year = {2000}, language = {en} } @article{BaeckerPouyeshmanSchnitzleretal.2011, author = {B{\"a}cker, Matthias and Pouyeshman, S. and Schnitzler, Thomas and Poghossian, Arshak and Wagner, Patrick and Biselli, Manfred and Sch{\"o}ning, Michael Josef}, title = {A silicon-based multi-sensor chip for monitoring of fermentation processes}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1364 -- 1369}, year = {2011}, language = {en} } @article{StockMalindretosIndlekoferetal.2001, author = {Stock, J. and Malindretos, J. and Indlekofer, K.M. and P{\"o}ttgens, Michael and F{\"o}rster, Arnold and L{\"u}th, Hans}, title = {A Vertical Resonant Tunneling Transistor for Application in Digital Logic Circuits}, series = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, journal = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, isbn = {0018-9383}, pages = {1028 -- 1032}, year = {2001}, language = {en} } @article{SimonisKringsLuethetal.2001, author = {Simonis, A. and Krings, T. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {A „hybrid" thin-film pH sensor with integrated thick-film reference}, series = {Sensors. 1 (2001), H. 6}, journal = {Sensors. 1 (2001), H. 6}, isbn = {1424-8220}, pages = {183 -- 192}, year = {2001}, language = {en} } @article{SchoeningKloock2007, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization}, series = {Electroanalysis. 19 (2007), H. 19-20}, journal = {Electroanalysis. 19 (2007), H. 19-20}, isbn = {1040-0397}, pages = {2029 -- 2038}, year = {2007}, language = {en} } @techreport{HaegerBongaertsSiegert2023, author = {Haeger, Gerrit and Bongaerts, Johannes and Siegert, Petra}, title = {Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep)}, pages = {17Seiten}, year = {2023}, language = {de} } @techreport{SiegertBongaertsWagneretal.2022, author = {Siegert, Petra and Bongaerts, Johannes and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Abschlussbericht zum Projekt zur {\"U}berwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen}, address = {Aachen}, organization = {FH Aachen}, pages = {16 Seiten}, year = {2022}, language = {de} } @article{YoshinobuEckenPoghossianetal.2001, author = {Yoshinobu, T. and Ecken, H. and Poghossian, Arshak and L{\"u}th, H. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {Alternative sensor materials for light-addressable potentiometric sensors}, series = {Sensors and Actuators B. 76 (2001), H. 1-3}, journal = {Sensors and Actuators B. 76 (2001), H. 1-3}, isbn = {0925-4005}, pages = {388 -- 392}, year = {2001}, language = {en} } @inproceedings{MoritzYoshinobuFingeretal.2003, author = {Moritz, Werner and Yoshinobu, Tatsuo and Finger, Friedhelm and Krause, Steffi and Sch{\"o}ning, Michael Josef}, title = {Amorphous silicon as semiconductor material for high resolution LAPS}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {48 -- 49}, year = {2003}, language = {en} } @article{SchoeningWangJacobsetal.2004, author = {Sch{\"o}ning, Michael Josef and Wang, J. and Jacobs, M. and Knobbe, D.-T. and Muck, A.}, title = {Amperometric PDMS-glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {566 -- 567}, year = {2004}, language = {en} } @article{SchoeningJacobsMucketal.2005, author = {Sch{\"o}ning, Michael Josef and Jacobs, M. and Muck, A. and Knobbe, D.-T. and Wang, J. and Chatrathi, M. and Spillmann, S.}, title = {Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamin detection}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {688 -- 694}, year = {2005}, language = {en} } @inproceedings{WuPoghossianWerneretal.2013, author = {Wu, Chunsheng and Poghossian, Arshak and Werner, Frederik and Bronder, Thomas and B{\"a}cker, Matthias and Wang, Ping and Sch{\"o}ning, Michael Josef}, title = {An application of a scanning light-addressable potentiometric sensor for label-free DNA detection}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {164 -- 168}, year = {2013}, language = {en} } @article{SchusserPoghossianBaeckeretal.2015, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Krischer, M. and Leinhos, Marcel and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {An application of field-effect sensors for in-situ monitoring of degradation of biopolymers}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.10.058}, pages = {954 -- 959}, year = {2015}, abstract = {The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al-p-Si-SiO2-Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13).}, language = {en} } @article{AbouzarPoghossianPedrazaetal.2011, author = {Abouzar, Maryam H. and Poghossian, Arshak and Pedraza, A. M. and Gandhi, D. and Ingebrandt, S. and Moritz, W. and Sch{\"o}ning, Michael Josef}, title = {An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing}, series = {Biosensors and Bioelectronics. 26 (2011), H. 6}, journal = {Biosensors and Bioelectronics. 26 (2011), H. 6}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {3023 -- 3028}, year = {2011}, language = {en} } @article{PoghossianWeldenBuniatyanetal.2021, author = {Poghossian, Arshak and Welden, Rene and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21186161}, pages = {17}, year = {2021}, abstract = {The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed.}, language = {en} } @article{SpiessWilfriedAlvarezetal.2011, author = {Spiess, Elmar and Wilfried, Reichardt and Alvarez, Gerardo and Gottrup, Marcus and {\"O}hlschl{\"a}ger, Peter}, title = {An Artificial PAP Gene Breaks Self-tolerance and Promotes Tumor Regression in the TRAMP Model for Prostate Carcinoma}, series = {Molecular Therapy}, volume = {20}, journal = {Molecular Therapy}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1525-0016}, pages = {555 -- 564}, year = {2011}, language = {en} }