@article{FunkeBeckmannKeinzetal.2016, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion}, series = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4975-0}, doi = {10.1115/GT2016-56430}, pages = {12}, year = {2016}, abstract = {The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.}, language = {en} } @misc{GamgamiCzupallaGarciaetal.2016, author = {Gamgami, Farid and Czupalla, Markus and Garcia, Antonio and Agnolon, David}, title = {From planetary transits to spacecraft design: achieving PLATO's pointing performance}, series = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, journal = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, year = {2016}, abstract = {In the last decades, several hundred exoplanets could be detected thanks to space-based observatories, namely CNES' COROT and NASA's Kepler. To expand this quest ESA plans to launch CHEOPS as the f irst small class mission in the cosmic visions program (S1) and PLATO as the 3rd medium class mission, so called M3 . PLATO's primary objective is the detection of Earth like Exoplanets orbiting solar type stars in the habitable zone and characterisation of their bulk properties. This is possible by precise lightcurve measurement via 34 cameras. That said it becomes obvious that accurate pointing is key to achieve the required signal to noise ratio for positive transit detection. The paper will start with a comprehensive overview of PLATO's mission objectives and mission architecture. Hereafter, special focus will be devoted to PLATO's pointing requirements. Understanding the very nature of PLATO's pointing requirements is essential to derive a design baseline to achieve the required performance. The PLATO frequency domain is of particular interest, ranging from 40 mHz to 3 Hz. Due to the very different time-scales involved, the spectral pointing requirement is decomposed into a high frequency part dominated by the attitude control system and the low frequency part dominated by the thermo-elastic properties of the spacecraft's configuration. Both pose stringent constraints on the overall design as well as technology properties to comply with the derived requirements and thus assure a successful mission.}, language = {en} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannAbanteriba2017, author = {Funke, Harald and Beckmann, Nils and Abanteriba, Sylvester}, title = {A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1}, series = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, booktitle = {Proceedings of the Eleventh Asia-Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017}, isbn = {978-1-5108-5646-2}, pages = {262 -- 265}, year = {2017}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @inproceedings{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple NEA rendezvous mission: Solar sailing options}, series = {Fourth International Symposium on Solar Sailing}, booktitle = {Fourth International Symposium on Solar Sailing}, pages = {1 -- 11}, year = {2017}, abstract = {The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58\% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.}, language = {en} } @misc{ArtmannLinderBayeretal.2017, author = {Artmann, Gerhard and Linder, Peter and Bayer, Robin and Gossmann, Matthias}, title = {Celldrum electrode arrangement for measuring mechanical stress [Patent of invention]}, publisher = {WIPO}, address = {Geneva}, pages = {18 Seiten}, year = {2017}, abstract = {The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance.}, language = {en} } @article{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Einsatz von Holzwerkstoffen in Fahrzeugstrukturen}, series = {Bauen mit Holz}, journal = {Bauen mit Holz}, number = {3}, publisher = {Bruderverlag}, address = {K{\"o}ln}, issn = {0005-6545}, pages = {32 -- 38}, year = {2017}, language = {de} } @inproceedings{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Holzwerkstoffe in Karosseriestrukturen}, series = {Tagungsband Aachener Holzbautagung 2017}, booktitle = {Tagungsband Aachener Holzbautagung 2017}, editor = {Uibel, Thormas and Peterson, Leif Arne and Baumann, Marcus}, issn = {2197-4489}, pages = {34 -- 45}, year = {2017}, language = {de} } @article{BarnatFariaBosse2017, author = {Barnat, Miriam and Faria, Joana Abelha and Bosse, Elke}, title = {Heterogenit{\"a}t und Studierf{\"a}higkeit: Erste Ergebnisse einer L{\"a}ngsschnittbefragung}, series = {Qualit{\"a}t in der Wissenschaft: QiW ; Zeitschrift f{\"u}r Qualit{\"a}tsentwicklung in Forschung, Studium und Administration}, volume = {11}, journal = {Qualit{\"a}t in der Wissenschaft: QiW ; Zeitschrift f{\"u}r Qualit{\"a}tsentwicklung in Forschung, Studium und Administration}, number = {1}, publisher = {UVW Universit{\"a}ts-Verlag Webler}, address = {Bielefeld}, issn = {1860-3041}, pages = {17 -- 24}, year = {2017}, language = {de} } @inproceedings{BarnatKnutzen2017, author = {Barnat, Miriam and Knutzen, S.}, title = {Erfolgsstrategien f{\"u}r organisationales Lernen}, series = {Hochschulwege 2015 : Wie ver{\"a}ndern Projekte die Hochschulen? ; Dokumentation der Tagung in Weimar im M{\"a}rz 2015}, booktitle = {Hochschulwege 2015 : Wie ver{\"a}ndern Projekte die Hochschulen? ; Dokumentation der Tagung in Weimar im M{\"a}rz 2015}, editor = {Mai, Andreas}, publisher = {tredition}, address = {Hamburg}, isbn = {978-3-7439-1763-7}, pages = {91 -- 108}, year = {2017}, language = {de} } @article{FunkeKeinzKustereretal.2017, author = {Funke, Harald and Keinz, Jan and Kusterer, K. and Haj Ayed, A. and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Development and Testing of a Low NOX Micromix Combustion Chamber for an Industrial Gas Turbine}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {9}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {1}, issn = {1882-5079}, doi = {10.38036/jgpp.9.1_27}, pages = {27 -- 36}, year = {2017}, abstract = {The Micromix combustion principle, based on cross-flow mixing of air and hydrogen, promises low emission applications in future gas turbines. The Micromix combustion takes place in several hundreds of miniaturized diffusion-type micro-flames. The major advantage is the inherent safety against flash-back and low NOx-emissions due to a very short residence time of reactants in the flame region. The paper gives insight into the Micromix design and scaling procedure for different energy densities and the interaction of scaling laws and key design drivers in gas turbine integration. Numerical studies, experimental testing, gas turbine integration and interface considerations are evaluated. The aerodynamic stabilization of the miniaturized flamelets and the resulting flow field, flame structure and NOx formation are analysed experimentally and numerically. The results show and confirm the successful adaption of the low NOx Micromix characteristics for a range of different nozzle sizes, energy densities and thermal power output.}, language = {de} } @inproceedings{FunkeKeinzHendrick2017, author = {Funke, Harald and Keinz, Jan and Hendrick, P.}, title = {Experimental Evaluation of the Pollutant and Noise Emissions of the GTCP 36-300 Gas Turbine Operated with Kerosene and a Low NOX Micromix Hydrogen Combustor}, series = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, booktitle = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, organization = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017-125, Milan, Italy, July 2017}, doi = {10.13009/EUCASS2017-125}, pages = {10 Seiten}, year = {2017}, language = {en} } @inproceedings{StrieganHajAyedFunkeetal.2017, author = {Striegan, C. and Haj Ayed, A. and Funke, Harald and Loechle, S. and Kazari, M. and Horikawa, A. and Okada, K. and Koga, K.}, title = {Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications}, series = {Proceedings of the ASME Turbo Expo}, booktitle = {Proceedings of the ASME Turbo Expo}, number = {Volume Part F130041-4B, 2017}, isbn = {978-079185085-5}, doi = {10.1115/GT2017-64719}, year = {2017}, language = {en} } @article{WeberRuffStahl2017, author = {Weber, Tobias and Ruff-Stahl, Hans-Joachim K.}, title = {Advances in Composite Manufacturing of Helicopter Parts}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {4}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {1}, issn = {2374-6793}, doi = {10.15394/ijaaa.2017.1153}, year = {2017}, language = {en} } @article{WeberArentSteffenetal.2017, author = {Weber, Tobias and Arent, Jan-Christoph and Steffen, Lucas and Balvers, Johannes M. and Duhovic, Miro}, title = {Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation}, series = {Journal of Composite Materials}, volume = {51}, journal = {Journal of Composite Materials}, number = {12}, publisher = {Sage}, address = {London}, issn = {1530-793X}, doi = {10.1177/0021998317699868}, pages = {1753 -- 1767}, year = {2017}, language = {en} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @article{AyedKustererFunkeetal.2017, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan and Bohn, D.}, title = {CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities}, series = {Propulsion and Power Research}, volume = {6}, journal = {Propulsion and Power Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2212-540X}, doi = {10.1016/j.jppr.2017.01.005}, pages = {15 -- 24}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2017, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, booktitle = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-5085-5}, doi = {10.1115/GT2017-64795}, year = {2017}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.\%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.}, language = {en} } @incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @inproceedings{SchildtBraunMarcocca2017, author = {Schildt, P. and Braun, Carsten and Marcocca, P.}, title = {Flight testing the extra 330LE flying testbed}, series = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, booktitle = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, isbn = {978-151085387-4}, pages = {349 -- 362}, year = {2017}, language = {en} } @inproceedings{Czupalla2017, author = {Czupalla, Markus}, title = {Pflanzen oder Maschinen - was l{\"a}ßt uns auf dem Mars {\"u}berleben?}, series = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, booktitle = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {12 -- 12}, year = {2017}, language = {de} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @article{Czupalla2017, author = {Czupalla, Markus}, title = {Ein Garten im Weltraum}, series = {Spektrum der Wissenschaft}, journal = {Spektrum der Wissenschaft}, publisher = {Spektrum-der-Wiss.-Verl.-Ges.}, address = {Heidelberg}, year = {2017}, language = {de} } @inproceedings{BarnatMergner2017, author = {Barnat, Miriam and Mergner, Julia}, title = {Forschungsbasierte Qualit{\"a}tsentwicklung am Beispiel der Analyse von Lernprozessen und der Wirksamkeit von F{\"o}rderprogrammen}, series = {3. Internationale Tagung f{\"u}r Qualit{\"a}tsmanagement und Qualit{\"a}tsentwicklung im Hochschulbereich 2.-3. Februar 2017}, booktitle = {3. Internationale Tagung f{\"u}r Qualit{\"a}tsmanagement und Qualit{\"a}tsentwicklung im Hochschulbereich 2.-3. Februar 2017}, pages = {28 Seiten}, year = {2017}, language = {de} } @inproceedings{BlomeGerzerBaumstarkKhanetal.2017, author = {Blome, Hans-Joachim and Gerzer, Rupert and Baumstark-Khan, Christa and Ewald, Reinhold and Heinicke, Christiane and Czupalla, Markus and Carter, Layne and Anderson, Molly}, title = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {15 Seiten}, year = {2017}, language = {de} } @article{Finger2017, author = {Finger, Felix}, title = {Vergleichende Leistungs- und Nutzenbewertung von VTOL- und CTOL-UAVs}, series = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, volume = {38}, journal = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, number = {1}, issn = {0173-6264}, pages = {44 -- 47}, year = {2017}, language = {de} } @inproceedings{BarnatBosseMergneretal.2017, author = {Barnat, Miriam and Bosse, Elke and Mergner, Julia and J{\"a}nsch, Vanessa}, title = {Entwicklung studienrelevanter Kompetenzen im Zusammenspiel mit Studieneinstiegsangeboten}, series = {KoBF-Auswertungsworkshop 31.05.-01.06.2017}, booktitle = {KoBF-Auswertungsworkshop 31.05.-01.06.2017}, pages = {53 Seiten}, year = {2017}, language = {de} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {The Impact of Electric Propulsion on the Performance of VTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft}, series = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, pages = {15 Seiten}, year = {2017}, language = {en} } @inproceedings{BaaderReiswichBartschetal.2018, author = {Baader, Fabian and Reiswich, M. and Bartsch, M. and Keller, D. and Tiede, E. and Keck, G. and Demircian, A. and Friedrich, M. and Dachwald, Bernd and Sch{\"u}ller, K. and Lehmann, R. and Chojetzki, R. and Durand, C. and Rapp, L. and Kowalski, Julia and F{\"o}rstner, R.}, title = {VIPER - Student research on extraterrestrical ice penetration technology}, series = {Proceedings of the 2nd Symposium on Space Educational Activities}, booktitle = {Proceedings of the 2nd Symposium on Space Educational Activities}, pages = {1 -- 6}, year = {2018}, abstract = {Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process.}, language = {en} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} } @inproceedings{SchulzeMuehleisenFeyerl2018, author = {Schulze, Sven and M{\"u}hleisen, M. and Feyerl, G{\"u}nter}, title = {Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology}, series = {18. Internationales Stuttgarter Symposium. Proceedings}, booktitle = {18. Internationales Stuttgarter Symposium. Proceedings}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-21194-3}, pages = {75 -- 89}, year = {2018}, language = {en} } @article{RoethPielenWolffetal.2018, author = {R{\"o}th, Thilo and Pielen, Michael and Wolff, Klaus and L{\"u}diger, Thomas}, title = {Urbane Fahrzeugkonzepte f{\"u}r die Shared Mobility}, series = {Automobiltechnische Zeitschrift - ATZ}, volume = {120}, journal = {Automobiltechnische Zeitschrift - ATZ}, number = {1}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0001-2785}, doi = {10.1007/s35148-017-0176-8}, pages = {18 -- 23}, year = {2018}, abstract = {Urbane Mobilit{\"a}tskonzepte der Zukunft erfordern neue Unternehmensformen, idealerweise aus Old Economy und New Economy, sowie eine enge Anbindung an die gesellschaftsrelevante Zukunftsforschung. F{\"u}r neue Fahrzeugkonzepte des Carsharing bedeutet dies, dass alle kostenverursachenden Faktoren erfasst und analysiert werden m{\"u}ssen. Die FH Aachen, share2drive und FEV geben einen Ausblick auf die zuk{\"u}nftige Fahrzeugklasse der Personal Public Vehicles als „Rolling Device".}, language = {de} } @article{SchirraBissonnetteBramesfeld2018, author = {Schirra, Julian and Bissonnette, William and Bramesfeld, G{\"o}tz}, title = {Wake-model effects on induced drag prediction of staggered boxwings}, series = {Aerospace}, volume = {5}, journal = {Aerospace}, number = {1}, issn = {2226-4310}, doi = {10.3390/aerospace5010014}, year = {2018}, language = {en} } @incollection{PielenRoethFlatten2018, author = {Pielen, Michael and R{\"o}th, Thilo and Flatten, T.}, title = {Erfolgsfaktoren k{\"u}nftiger Gesch{\"a}ftsmodelle von urbanen, geteilten Mobilit{\"a}tsdienstleistungen}, series = {Mobilit{\"a}t und digitale Transformation. (9. Wissenschaftsforum Mobilit{\"a}t. Tagungsband)}, booktitle = {Mobilit{\"a}t und digitale Transformation. (9. Wissenschaftsforum Mobilit{\"a}t. Tagungsband)}, editor = {Proff, H.}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-20779-3}, doi = {10.1007/978-3-658-20779-3_2}, pages = {435 -- 448}, year = {2018}, abstract = {Digitalisierung bezeichnet die Nutzung großer Datenmengen, die zu einer umfassenden Vernetzung aller Bereiche der Wirtschaft und Gesellschaft f{\"u}hren wird (BMWi, 2015 und {\"a}hnlich K{\"o}hler/Wollschl{\"a}ger, 2014: 79). Sie umfasst die Erhebung von analogen Informationen („Big Data" in einem engen Sinne; z.B. O´Leary, 2013), ihre Speicherung in einem digitaltechnischen System (lokale Speicherung oder „Cloud Computing" durch die Weiterentwickelung des Internets; z.B. Hashem et al., 2015: 101), die Analyse und Interpretation sowie den Transfer in andere Systeme („Internet der Dinge" bzw. „Internet of Things"; z.B. Ashton, 2009).}, language = {de} } @incollection{RoethDeutskensKreiskoetheretal.2018, author = {R{\"o}th, Thilo and Deutskens, Christoph and Kreisk{\"o}ther, Kai and Heimes, Heiner Hans and Schittny, Bastian and Ivanescu, Sebastian and Kleine B{\"u}ning, Max and Reinders, Christian and Wessels, Saskia and Haunreiter, Andreas and Reisgen, Uwe and Thiele, Regina and Hameyer, Kay and Doncker, Rik W. de and Sauer, Uwe and Hoek, Hauke van and H{\"u}bner, Mareike and Hennen, Martin and Stolze, Thilo and Vetter, Andreas and Hagedorn, J{\"u}rgen and M{\"u}ller, Dirk and Rewitz, Kai and Wesseling, Mark and Flieger, Bj{\"o}rn}, title = {Entwicklung von elektrofahrzeugspezifischen Systemen}, series = {Elektromobilit{\"a}t}, booktitle = {Elektromobilit{\"a}t}, publisher = {Springer Vieweg}, address = {Berlin, Heidelberg}, isbn = {978-3-662-53137-2}, doi = {10.1007/978-3-662-53137-2_6}, pages = {279 -- 386}, year = {2018}, abstract = {Die Batterie ist eine der absolut zentralen Komponenten des Elektrofahrzeugs. Die serielle Entwicklung und Produktion dieser Batterien und die Verbesserung der Leistungen wird entscheidend f{\"u}r den Erfolg der Elektromobilit{\"a}t sein. Die Batterie ist jedoch nicht das einzige elektrofahrzeugspezifische System, das neu entwickelt, umkonzipiert oder verbessert werden muss. So sind ebenso die Entwicklung der neuen Fahrzeugstruktur sowie des elektrifizierten Antriebsstranges Teil dieses Kapitels. Weiterhin wird ein Blick auf das bedeutende Thema des Thermomanagements geworfen.}, language = {de} } @article{TekinAshikagaHorikawaetal.2018, author = {Tekin, Nurettin and Ashikaga, Mitsugu and Horikawa, Atsushi and Funke, Harald}, title = {Enhancement of fuel flexibility of industrial gas turbines by development of innovative hydrogen combustion systems}, series = {Gas for energy}, journal = {Gas for energy}, number = {2}, publisher = {Vulkan-Verlag}, address = {Essen}, pages = {4}, year = {2018}, abstract = {For fuel flexibility enhancement hydrogen represents a possible alternative gas turbine fuel within future low emission power generation, in case of hydrogen production by the use of renewable energy sources such as wind energy or biomass. Kawasaki Heavy Industries, Ltd. (KHI) has research and development projects for future hydrogen society; production of hydrogen gas, refinement and liquefaction for transportation and storage, and utilization with gas turbine / gas engine for the generation of electricity. In the development of hydrogen gas turbines, a key technology is the stable and low NOx hydrogen combustion, especially Dry Low Emission (DLE) or Dry Low NOx (DLN) hydrogen combustion. Due to the large difference in the physical properties of hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for DLE hydrogen combustion. Thus, the development of DLE hydrogen combustion technologies is an essential and challenging task for the future of hydrogen fueled gas turbines. The DLE Micro-Mix combustion principle for hydrogen fuel has been in development for many years to significantly reduce NOx emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized "diffusion-type" flames. The major advantages of this combustion principle are the inherent safety against flashback and the low NOx-emissions due to a very short residence time of the reactants in the flame region of the micro-flames.}, language = {en} } @article{OttenWeberArent2018, author = {Otten, Dennis and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation - On Its Way to Industrial Application}, series = {International Journal of Aviation, Aeronautics, and Aerospace}, volume = {5}, journal = {International Journal of Aviation, Aeronautics, and Aerospace}, number = {2}, publisher = {Embry-Riddle Aeronautical University}, address = {Daytona Beach, Fla.}, issn = {2374-6793}, doi = {10.15394/ijaaa.2018.1217}, year = {2018}, abstract = {Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview of the capabilities of MPS in the fields of sheet metal forming and prepreg autoclave manufacturing of composite parts summarizing the resulting benefits for tooling design and manufacturing engineering. The simulation technology is explained briefly in order to show several simplification and optimization techniques for developing industrialized simulation approaches. Small case studies provide examples of an efficient application on an industrial scale.}, language = {en} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @article{FunkeBeckmannKeinzetal.2018, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {140}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {8}, publisher = {ASME}, address = {New York, NY}, issn = {0742-4795}, doi = {10.1115/1.4038882}, pages = {9 Seiten}, year = {2018}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Lange, Caroline and Maiwald, Volker and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Toth, Norbert and Wejmo, Elisabet and Biele, Jens and Krause, Christian and Cerotti, Matteo and Peloni, Alessandro and Dachwald, Bernd}, title = {Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing}, series = {2018 IEEE Aerospace Conference : 3-10 March 2018}, booktitle = {2018 IEEE Aerospace Conference : 3-10 March 2018}, isbn = {978-1-5386-2014-4}, pages = {20 Seiten}, year = {2018}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian and Herč{\´i}k, David and Herique, Alain and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron and Kofman, Wlodek and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and Toth, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions}, series = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, booktitle = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, pages = {1 -- 33}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} }