@article{PoghossianKarschuckWagneretal.2022, author = {Poghossian, Arshak and Karschuck, Tobias and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments}, series = {Biosensors}, volume = {12}, journal = {Biosensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios12050334}, pages = {Artikel 334}, year = {2022}, abstract = {Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C-V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C-V curves and the ConCap signals was also studied experimentally on Al-p-Si-SiO₂ EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles.}, language = {en} } @article{PourshahidiAchtsnichtOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Achtsnicht, Stefan and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {22}, editor = {Offenh{\"a}usser, Andreas}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22228776}, pages = {12 Seiten}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been explored for its applications in fields of magnetic biosensing, multiplex detection of magnetic nanoparticles (MNP) and the determination of core size distribution of MNP samples. Such applications rely on the application of a static offset magnetic field, which is generated traditionally with an electromagnet. Such a setup requires a current source, as well as passive or active cooling strategies, which directly sets a limitation based on the portability aspect that is desired for point of care (POC) monitoring applications. In this work, a measurement head is introduced that involves the utilization of two ring-shaped permanent magnets to generate a static offset magnetic field. A steel cylinder in the ring bores homogenizes the field. By variation of the distance between the ring magnets and of the thickness of the steel cylinder, the magnitude of the magnetic field at the sample position can be adjusted. Furthermore, the measurement setup is compared to the electromagnet offset module based on measured signals and temperature behavior.}, language = {en} } @article{VahidpourGuthmanArreolaetal.2022, author = {Vahidpour, Farnoosh and Guthman, Eric and Arreola, Julia and Alghazali, Yousef H. M. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050660}, pages = {Artikel 660}, year = {2022}, abstract = {In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry.}, language = {en} } @article{VahidpourAlghazaliAkcaetal.2022, author = {Vahidpour, Farnoosh and Alghazali, Yousef and Akca, Sevilay and Hommes, Gregor and Sch{\"o}ning, Michael Josef}, title = {An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060202}, pages = {Arikel 202}, year = {2022}, abstract = {This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs' capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.}, language = {en} } @article{HaegerGrankinWagner2023, author = {Haeger, Gerrit and Grankin, Alina and Wagner, Michaela}, title = {Construction of an Aspergillus oryzae triple amylase deletion mutant as a chassis to evaluate industrially relevant amylases using multiplex CRISPR/Cas9 editing technology}, series = {Applied Research}, journal = {Applied Research}, number = {Early View}, publisher = {Wiley-VCH}, issn = {2702-4288}, doi = {10.1002/appl.202200106}, pages = {1 -- 15}, year = {2023}, abstract = {Aspergillus oryzae is an industrially relevant organism for the secretory production of heterologous enzymes, especially amylases. The activities of potential heterologous amylases, however, cannot be quantified directly from the supernatant due to the high background activity of native α-amylase. This activity is caused by the gene products of amyA, amyB, and amyC. In this study, an in vitro CRISPR/Cas9 system was established in A. oryzae to delete these genes simultaneously. First, pyrG of A. oryzae NSAR1 was mutated by exploiting NHEJ to generate a counter-selection marker. Next, all amylase genes were deleted simultaneously by co-transforming a repair template carrying pyrG of Aspergillus nidulans and flanking sequences of amylase gene loci. The rate of obtained triple knock-outs was 47\%. We showed that triple knockouts do not retain any amylase activity in the supernatant. The established in vitro CRISPR/Cas9 system was used to achieve sequence-specific knock-in of target genes. The system was intended to incorporate a single copy of the gene of interest into the desired host for the development of screening methods. Therefore, an integration cassette for the heterologous Fpi amylase was designed to specifically target the amyB locus. The site-specific integration rate of the plasmid was 78\%, with exceptional additional integrations. Integration frequency was assessed via qPCR and directly correlated with heterologous amylase activity. Hence, we could compare the efficiency between two different signal peptides. In summary, we present a strategy to exploit CRISPR/Cas9 for gene mutation, multiplex knock-out, and the targeted knock-in of an expression cassette in A. oryzae. Our system provides straightforward strain engineering and paves the way for development of fungal screening systems.}, language = {en} } @article{HaegerWirgesTanzmannetal.2023, author = {Haeger, Gerrit and Wirges, Jessika and Tanzmann, Nicole and Oyen, Sven and Jolmes, Tristan and Jaeger, Karl-Erich and Sch{\"o}rken, Ulrich and Bongaerts, Johannes and Siegert, Petra}, title = {Chaperone assisted recombinant expression of a mycobacterial aminoacylase in Vibrio natriegens and Escherichia coli capable of N-lauroyl-L-amino acid synthesis}, series = {Microbial Cell Factories}, journal = {Microbial Cell Factories}, number = {22}, publisher = {Springer Nature}, issn = {1475-2859}, doi = {10.1186/s12934-023-02079-1}, pages = {Article number: 77 (2023)}, year = {2023}, abstract = {Background Aminoacylases are highly promising enzymes for the green synthesis of acyl-amino acids, potentially replacing the environmentally harmful Schotten-Baumann reaction. Long-chain acyl-amino acids can serve as strong surfactants and emulsifiers, with application in cosmetic industries. Heterologous expression of these enzymes, however, is often hampered, limiting their use in industrial processes. Results We identified a novel mycobacterial aminoacylase gene from Mycolicibacterium smegmatis MKD 8, cloned and expressed it in Escherichia coli and Vibrio natriegens using the T7 overexpression system. The recombinant enzyme was prone to aggregate as inclusion bodies, and while V. natriegens Vmax™ could produce soluble aminoacylase upon induction with isopropyl β-d-1-thiogalactopyranoside (IPTG), E. coli BL21 (DE3) needed autoinduction with lactose to produce soluble recombinant protein. We successfully conducted a chaperone co-expression study in both organisms to further enhance aminoacylase production and found that overexpression of chaperones GroEL/S enhanced aminoacylase activity in the cell-free extract 1.8-fold in V. natriegens and E. coli. Eventually, E. coli ArcticExpress™ (DE3), which co-expresses cold-adapted chaperonins Cpn60/10 from Oleispira antarctica, cultivated at 12 °C, rendered the most suitable expression system for this aminoacylase and exhibited twice the aminoacylase activity in the cell-free extract compared to E. coli BL21 (DE3) with GroEL/S co-expression at 20 °C. The purified aminoacylase was characterized based on hydrolytic activities, being most stable and active at pH 7.0, with a maximum activity at 70 °C, and stability at 40 °C and pH 7.0 for 5 days. The aminoacylase strongly prefers short-chain acyl-amino acids with smaller, hydrophobic amino acid residues. Several long-chain amino acids were fairly accepted in hydrolysis as well, especially N-lauroyl-L-methionine. To initially evaluate the relevance of this aminoacylase for the synthesis of N-acyl-amino acids, we demonstrated that lauroyl-methionine can be synthesized from lauric acid and methionine in an aqueous system. Conclusion Our results suggest that the recombinant enzyme is well suited for synthesis reactions and will thus be further investigated.}, language = {en} } @article{JanusAchtsnichtTempeletal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Tempel, Laura and Drinic, Aleksaner and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Influence of fibroin membrane composition and curing parameters on the performance of a biodegradable enzymatic biosensor manufactured from Silicon-Free Carbon}, series = {Physica status solidi : pss. A, Applications and materials science}, volume = {220}, journal = {Physica status solidi : pss. A, Applications and materials science}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300081}, pages = {Artikel 2300081}, year = {2023}, abstract = {Herein, fibroin, polylactide (PLA), and carbon are investigated for their suitability as biocompatible and biodegradable materials for amperometric biosensors. For this purpose, screen-printed carbon electrodes on the biodegradable substrates fibroin and PLA are modified with a glucose oxidase membrane and then encapsulated with the biocompatible material Ecoflex. The influence of different curing parameters of the carbon electrodes on the resulting biosensor characteristics is studied. The morphology of the electrodes is investigated by scanning electron microscopy, and the biosensor performance is examined by amperometric measurements of glucose (0.5-10 mM) in phosphate buffer solution, pH 7.4, at an applied potential of 1.2 V versus a Ag/AgCl reference electrode. Instead of Ecoflex, fibroin, PLA, and wound adhesive are tested as alternative encapsulation compounds: a series of swelling tests with different fibroin compositions, PLA, and Ecoflex has been performed before characterizing the most promising candidates by chronoamperometry. Therefore, the carbon electrodes are completely covered with the particular encapsulation material. Chronoamperometric measurements with H2O2 concentrations between 0.5 and 10 mM enable studying the leakage current behavior.}, language = {en} } @article{FalkenbergVossBottetal.2023, author = {Falkenberg, Fabian and Voß, Leonie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {New robust subtilisins from halotolerant and halophilic Bacillaceae}, series = {Applied Microbiology and Biotechnology}, volume = {107}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer Nature}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12553-w}, pages = {3939 -- 3954}, year = {2023}, abstract = {The aim of the present study was the characterisation of three true subtilisins and one phylogenetically intermediate subtilisin from halotolerant and halophilic microorganisms. Considering the currently growing enzyme market for efficient and novel biocatalysts, data mining is a promising source for novel, as yet uncharacterised enzymes, especially from halophilic or halotolerant Bacillaceae, which offer great potential to meet industrial needs. Both halophilic bacteria Pontibacillus marinus DSM 16465ᵀ and Alkalibacillus haloalkaliphilus DSM 5271ᵀ and both halotolerant bacteria Metabacillus indicus DSM 16189 and Litchfieldia alkalitelluris DSM 16976ᵀ served as a source for the four new subtilisins SPPM, SPAH, SPMI and SPLA. The protease genes were cloned and expressed in Bacillus subtilis DB104. Purification to apparent homogeneity was achieved by ethanol precipitation, desalting and ion-exchange chromatography. Enzyme activity could be observed between pH 5.0-12.0 with an optimum for SPPM, SPMI and SPLA around pH 9.0 and for SPAH at pH 10.0. The optimal temperature for SPMI and SPLA was 70 °C and for SPPM and SPAH 55 °C and 50 °C, respectively. All proteases showed high stability towards 5\% (w/v) SDS and were active even at NaCl concentrations of 5 M. The four proteases demonstrate potential for future biotechnological applications.}, language = {en} } @article{BertzMolinnusSchoeningetal.2023, author = {Bertz, Morten and Molinnus, Denise and Sch{\"o}ning, Michael Josef and Homma, Takayuki}, title = {Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy}, series = {Chemosensors}, volume = {8}, journal = {Chemosensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080445}, pages = {Artikel 445}, year = {2023}, abstract = {Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore's core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores' coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death.}, language = {en} } @article{WendlandtKochBritzetal.2023, author = {Wendlandt, Tim and Koch, Claudia and Britz, Beate and Liedek, Anke and Schmidt, Nora and Werner, Stefan and Gleba, Yuri and Vahidpour, Farnoosh and Welden, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System}, series = {Viruses}, volume = {9}, journal = {Viruses}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {doi.org/10.3390/v15091951}, pages = {Artikel 1951}, year = {2023}, abstract = {Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.}, language = {en} } @article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{JanusAchtsnichtDrinicetal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Drinic, Aleksander and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications}, series = {Applied Research}, journal = {Applied Research}, number = {Accepted manuscript}, publisher = {Wiley-VCH}, issn = {2702-4288 (Print)}, doi = {10.1002/appl.202300102}, pages = {22 Seiten}, year = {2023}, abstract = {In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C.}, language = {en} } @article{KarschuckSchmidtAchtsnichtetal.2023, author = {Karschuck, Tobias and Schmidt, Stefan and Achtsnicht, Stefan and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiplexing system for automated characterization of a capacitive field-effect sensor array}, series = {Physica Status Solidi A}, volume = {220}, journal = {Physica Status Solidi A}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300265}, pages = {7 Seiten}, year = {2023}, abstract = {In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive-voltage (C-V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles.}, language = {en} } @article{HaegerProbstJaegeretal.2023, author = {Haeger, Gerrit and Probst, Johanna and Jaeger, Karl-Erich and Bongaerts, Johannes and Siegert, Petra}, title = {Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13723}, pages = {2224 -- 2238}, year = {2023}, abstract = {Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{HaegerJolmesOyenetal.2024, author = {Haeger, Gerrit and Jolmes, Tristan and Oyen, Sven and Jaeger, Karl-Erich and Bongaerts, Johannes and Sch{\"o}rken, Ulrich and Siegert, Petra}, title = {Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis}, series = {Applied Microbiology and Biotechnology}, journal = {Applied Microbiology and Biotechnology}, number = {108}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12868-8}, pages = {14 Seiten}, year = {2024}, abstract = {N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75\%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR.}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} }