@article{AkimbekovDigelAbdievaetal.2021, author = {Akimbekov, Nuraly and Digel, Ilya and Abdieva, Gulzhamal and Ualieva, Perizat and Tastambek, Kuanysh}, title = {Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data}, series = {Biofuels}, volume = {12}, journal = {Biofuels}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1759-7277}, pages = {247 -- 258}, year = {2021}, abstract = {The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24\% of crude lignite (5\% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe-mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health.}, language = {en} } @article{JildehWagnerSchoening2021, author = {Jildeh, Zaid B. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000732}, pages = {27 Seiten}, year = {2021}, abstract = {The treatment method to deactivate viable microorganisms from objects or products is termed sterilization. There are multiple forms of sterilization, each intended to be applied for a specific target, which depends on—but not limited to—the thermal, physical, and chemical stability of that target. Herein, an overview on the currently used sterilization processes in the global market is provided. Different sterilization techniques are grouped under a category that describes the method of treatment: radiation (gamma, electron beam, X-ray, and ultraviolet), thermal (dry and moist heat), and chemical (ethylene oxide, ozone, chlorine dioxide, and hydrogen peroxide). For each sterilization process, the typical process parameters as defined by regulations and the mode of antimicrobial activity are summarized. Finally, the recommended microorganisms that are used as biological indicators to validate sterilization processes in accordance with the rules that are established by various regulatory agencies are summarized.}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} } @article{MolinnusDrinicIkenetal.2021, author = {Molinnus, Denise and Drinic, Aleksander and Iken, Heiko and Kr{\"o}ger, Nadja and Zinser, Max and Smeets, Ralf and K{\"o}pf, Marius and Kopp, Alexander and Sch{\"o}ning, Michael Josef}, title = {Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk}, series = {Biosensors and Bioelectronics}, volume = {183}, journal = {Biosensors and Bioelectronics}, number = {Art. 113204}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2021.113204}, year = {2021}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{WaldvogelRitzmannFreyleretal.2021, author = {Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Helm, Michael and Monti, Elena and Albracht, Kirsten and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco}, title = {The Anticipation of Gravity in Human Ballistic Movement}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.614060}, year = {2021}, abstract = {Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.}, language = {en} } @article{YoshinobuSchoening2021, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100727}, year = {2021}, language = {en} } @article{HugenrothNeidlinEngelmannetal.2021, author = {Hugenroth, Kristin and Neidlin, Michael and Engelmann, Ulrich M. and Kaufmann, Tim A. S. and Steinseifer, Ulrich and Heilmann, Torsten}, title = {Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk-Reduced Placement: an In Silico Proof-of-Concept}, series = {Artificial Organs}, journal = {Artificial Organs}, number = {Accepted Article}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.13964}, year = {2021}, language = {en} } @article{HacklNacovKammerlohretal.2021, author = {Hackl, Michael and Nacov, Julia and Kammerlohr, Sandra and Staat, Manfred and Buess, Eduard and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure}, series = {The American Journal of Sports Medicine}, volume = {49}, journal = {The American Journal of Sports Medicine}, number = {7}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211006138}, pages = {1847 -- 1853}, year = {2021}, language = {en} } @article{NeumaierKotliarHaerenetal.2021, author = {Neumaier, Felix and Kotliar, Konstantin and Haeren, Roel Hubert Louis and Temel, Yasin and L{\"u}ke, Jan Niklas and Seyam, Osama and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Schubert, Gerrit Alexander and Schneider, Toni and Albanna, Walid}, title = {Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA)}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, publisher = {Frontiers}, doi = {10.3389/fneur.2021.659890}, pages = {1 -- 11}, year = {2021}, language = {en} } @article{GivanoudiCornelisRasschaertetal.2021, author = {Givanoudi, Stella and Cornelis, Peter and Rasschaert, Geertrui and Wackers, Gideon and Iken, Heiko and Rolka, David and Yongabi, Derick and Robbens, Johan and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source}, series = {Sensors and Actuators B: Chemical}, journal = {Sensors and Actuators B: Chemical}, number = {In Press, Journal Pre-proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2021.129484}, pages = {Article 129484}, year = {2021}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @article{JablonskiPoghossianSeverinetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Severin, Robin and Keusgen, Michael and Wege, Christian and Sch{\"o}ning, Michael Josef}, title = {Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {1}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/mi12010057}, pages = {Artikel 57}, year = {2021}, abstract = {Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.}, language = {en} } @article{EngelmannShalabyShashaetal.2021, author = {Engelmann, Ulrich M. and Shalaby, Ahmed and Shasha, Carolyn and Krishnan, Kannan M. and Krause, Hans-Joachim}, title = {Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, isbn = {2079-4991}, doi = {10.3390/nano11051257}, pages = {1 -- 16}, year = {2021}, abstract = {Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90\% of the frequency mixing magnetic response signal is generated by the largest 10\% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.}, language = {en} } @article{OliveiraMolinnusBegingetal.2021, author = {Oliveira, Danilo A. and Molinnus, Denise and Beging, Stefan and Siqueira Jr, Jos{\´e} R. and Sch{\"o}ning, Michael Josef}, title = {Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000747}, pages = {1 -- 9}, year = {2021}, abstract = {A new functionalization method to modify capacitive electrolyte-insulator-semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS-nanofilm-enzyme) of around 15\% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS-enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.}, language = {en} } @article{WeldenNagamineKomesuWagneretal.2021, author = {Welden, Rene and Nagamine Komesu, Cindy A. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2698-5977}, doi = {10.1002/elsa.202100131}, pages = {1 -- 5}, year = {2021}, abstract = {Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin.}, language = {en} } @article{JablonskiPoghossianKeusgenetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Detection of plant virus particles with a capacitive field-effect sensor}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, address = {Cham}, issn = {1618-2650}, doi = {10.1007/s00216-021-03448-8}, pages = {5669 -- 5678}, year = {2021}, abstract = {Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @article{Gaigall2021, author = {Gaigall, Daniel}, title = {Test for Changes in the Modeled Solvency Capital Requirement of an Internal Risk Model}, series = {ASTIN Bulletin}, volume = {51}, journal = {ASTIN Bulletin}, number = {3}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {1783-1350}, doi = {10.1017/asb.2021.20}, pages = {813 -- 837}, year = {2021}, abstract = {In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katja N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior is preserved during 30\% body weight supported gait training}, series = {Frontiers in Sports and Active Living}, volume = {2021}, journal = {Frontiers in Sports and Active Living}, number = {2}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2020.614559}, pages = {Artikel 614559}, year = {2021}, abstract = {Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30\% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75\% of the speed at which they typically transition to running, with 0\% and 30\% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle-tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle-tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle-series elastic element behavior. Walking with 30\% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle-tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle-series elastic element behavior was observed during walking with 30\% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bj{\"o}rn and St{\"a}udle, Benjamin and Attias, Julia and S{\"u}ss, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, J{\"o}rn and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {Article number: 22555}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-00527-9}, pages = {13 Seiten}, year = {2021}, abstract = {The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity.}, language = {en} } @article{WerkhausenWillwacherAlbracht2021, author = {Werkhausen, Amelie and Willwacher, Steffen and Albracht, Kirsten}, title = {Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration}, series = {Scandinavian Journal of Medicine \& Science in Sports}, volume = {31}, journal = {Scandinavian Journal of Medicine \& Science in Sports}, number = {7}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0905-7188 (Druckausgabe)}, doi = {10.1111/sms.13956}, pages = {1471 -- 1480}, year = {2021}, abstract = {The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work.}, language = {en} } @article{MontiWaldvogelRitzmannetal.2021, author = {Monti, Elena and Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Albracht, Kirsten and Helm, Michael and De Cesare, Niccol{\`o} and Pavan, Piero and Reggiani, Carlo and Gollhofer, Albert and Narici, Marco Vincenzo}, title = {Muscle in variable gravity: "I do not know where I am, but I know what to do"}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.714655}, pages = {19 Seiten}, year = {2021}, abstract = {Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal "Earth" gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth's gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g.}, language = {en} } @article{StaeudleSeynnesLapsetal.2021, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and G{\"o}ll, Fabian and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon}, series = {Medicine \& Science in Sports \& Exercise}, volume = {53}, journal = {Medicine \& Science in Sports \& Exercise}, number = {7}, publisher = {American College of Sports Medicine}, address = {Philadelphia, Pa.}, issn = {1530-0315}, doi = {10.1249/MSS.0000000000002592}, pages = {1356 -- 1366}, year = {2021}, abstract = {Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle-tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force-length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force-length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13\% ± 10\%, 105\% ± 28\%, and 54\% ± 24\%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32\% ± 12\%) and with greater pennation angles (31\% ± 26\%). A mean deficit in plantarflexion moment of 31\% ± 10\% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function.}, language = {en} } @unpublished{RingersBialonskiSolovevetal.2021, author = {Ringers, Christa and Bialonski, Stephan and Solovev, Anton and Hansen, Jan N. and Ege, Mert and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2021.11.23.469646}, pages = {19 Seiten}, year = {2021}, abstract = {Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} } @article{GerhardsSanderZivkovicetal.2020, author = {Gerhards, Michael and Sander, Volker and Zivkovic, Miroslav and Belloum, Adam and Bubak, Marian}, title = {New approach to allocation planning of many-task workflows on clouds}, series = {Concurrency and Computation: Practice and Experience}, volume = {32}, journal = {Concurrency and Computation: Practice and Experience}, number = {2 Article e5404}, publisher = {Wiley}, address = {Chichester}, issn = {1532-0634}, doi = {10.1002/cpe.5404}, pages = {1 -- 16}, year = {2020}, abstract = {Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.}, language = {en} } @inproceedings{SchmidtsKraftWinkensetal.2020, author = {Schmidts, Oliver and Kraft, Bodo and Winkens, Marvin and Z{\"u}ndorf, Albert}, title = {Catalog integration of low-quality product data by attribute label ranking}, series = {Proceedings of the 9th International Conference on Data Science, Technology and Applications - Volume 1: DATA}, booktitle = {Proceedings of the 9th International Conference on Data Science, Technology and Applications - Volume 1: DATA}, isbn = {978-989-758-440-4}, doi = {10.5220/0009831000900101}, pages = {90 -- 101}, year = {2020}, language = {en} } @article{HorbachStaatPerezVianaetal.2020, author = {Horbach, Andreas and Staat, Manfred and Perez-Viana, Daniel and Simmen, Hans-Peter and Neuhaus, Valentin and Pape, Hans-Christoph and Prescher, Andreas and Ciritsis, Bernhard}, title = {Biomechanical in vitro examination of a standardized low-volume tubular femoroplasty}, series = {Clinical Biomechanics}, volume = {80}, journal = {Clinical Biomechanics}, number = {Art. 105104}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.clinbiomech.2020.105104}, year = {2020}, abstract = {Background Osteoporosis is associated with the risk of fractures near the hip. Age and comorbidities increase the perioperative risk. Due to the ageing population, fracture of the proximal femur also proves to be a socio-economic problem. Preventive surgical measures have hardly been used so far. Methods 10 pairs of human femora from fresh cadavers were divided into control and low-volume femoroplasty groups and subjected to a Hayes fall-loading fracture test. The results of the respective localization and classification of the fracture site, the Singh index determined by computed tomography (CT) examination and the parameters in terms of fracture force, work to fracture and stiffness were evaluated statistically and with the finite element method. In addition, a finite element parametric study with different position angles and variants of the tubular geometry of the femoroplasty was performed. Findings Compared to the control group, the work to fracture could be increased by 33.2\%. The fracture force increased by 19.9\%. The used technique and instrumentation proved to be standardized and reproducible with an average poly(methyl methacrylate) volume of 10.5 ml. The parametric study showed the best results for the selected angle and geometry. Interpretation The cadaver studies demonstrated the biomechanical efficacy of the low-volume tubular femoroplasty. The numerical calculations confirmed the optimal choice of positioning as well as the inner and outer diameter of the tube in this setting. The standardized minimally invasive technique with the instruments developed for it could be used in further comparative studies to confirm the measured biomechanical results.}, language = {en} } @article{AkimbekovDigelSherelkhanetal.2020, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Lutfor, Afzalunnessa B. and Razzaque, Mohammed S.}, title = {Vitamin D and the Host-Gut Microbiome: A Brief Overview}, series = {Acta Histochemica et Cytochemica}, volume = {53}, journal = {Acta Histochemica et Cytochemica}, number = {3}, publisher = {Japan Society of Histochemistry and Cytochemistry}, address = {Osaka}, issn = {1347-5800}, doi = {10.1267/ahc.20011}, pages = {33 -- 42}, year = {2020}, abstract = {There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords "vitamin D," "intestines," "gut microflora," "bowel inflammation". Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression.}, language = {en} } @article{RamoshabaHuismanLammertynetal.2020, author = {Ramoshaba, Nthai E. and Huisman, Hugo W. and Lammertyn, Leandi and Kotliar, Konstantin and Schutte, Aletta E. and Smith, Wayne}, title = {Retinal microvasculature and masked hypertension in young adults: the African-PREDICT study}, series = {Hypertension Research}, journal = {Hypertension Research}, number = {43}, publisher = {Springer Nature}, address = {Osaka}, issn = {1348-4214}, doi = {10.1038/s41440-020-0487-0}, pages = {1231 -- 1238}, year = {2020}, abstract = {Masked hypertension is known to induce microvascular complications. However, it is unclear whether early microvascular changes are already occurring in young, otherwise healthy adults. We therefore investigated whether retinal microvascular calibers and acute responses to a flicker stimulus are related to masked hypertension. We used the baseline data of 889 participants aged 20-30 years who were taking part in the African Prospective study on the Early Detection and Identification of Cardiovascular Disease and Hypertension. Clinic and 24-h ambulatory blood pressure were measured. The central retinal artery equivalent (CRAE) and central retinal vein equivalent were calculated from fundus images, and retinal vessel dilation was determined in response to flicker light-induced provocation. A smaller CRAE was observed in those with masked hypertension vs. those with normotension (157.1 vs. 161.2 measuring units, P < 0.001). In forward multivariable-adjusted regression analysis, only CRAE was negatively related to masked hypertension [adjusted R² = 0.267, β = -0.097 (95\% CI = -0.165; -0.029), P = 0.005], but other retinal microvascular parameters were not associated with masked hypertension. In multivariable logistic regression analyses, masked hypertension [OR = 2.333, (95\% CI = 1.316; 4.241), P = 0.004] was associated with a narrower CRAE. In young healthy adults, masked hypertension was associated with retinal arteriolar narrowing, thereby reflecting early microvascular alterations known to predict cardiovascular outcomes in later life.}, language = {en} } @article{AkimbekovQiaoDigeletal.2020, author = {Akimbekov, Nuraly and Qiao, Xiaohui and Digel, Ilya and Abdieva, Gulzhamal and Ualieva, Perizat and Zhubanova, Azhar}, title = {The effect of leonardite-derived amendments on soil microbiome structure and potato yield}, series = {Agriculture}, volume = {10}, journal = {Agriculture}, number = {Art. 147}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/agriculture10050147}, pages = {1 -- 17}, year = {2020}, abstract = {Humic substances originating from various organic matters can ameliorate soil properties, stimulate plant growth, and improve nutrient uptake. Due to the low calorific heating value, leonardite is rather unsuitable as fuel. However, it may serve as a potential source of humic substances. This study was aimed at characterizing the leonardite-based soil amendments and examining the effect of their application on the soil microbial community, as well as on potato growth and tuber yield. A high yield (71.1\%) of humic acid (LHA) from leonardite has been demonstrated. Parental leonardite (PL) and LHA were applied to soil prior to potato cultivation. The 16S rRNA sequencing of soil samples revealed distinct relationships between microbial community composition and the application of leonardite-based soil amendments. Potato tubers were planted in pots in greenhouse conditions. The tubers were harvested at the mature stage for the determination of growth and yield parameters. The results demonstrated that the LHA treatments had a significant effect on increasing potato growth (54.9\%) and tuber yield (66.4\%) when compared to the control. The findings highlight the importance of amending leonardite-based humic products for maintaining the biogeochemical stability of soils, for keeping their healthy microbial community structure, and for increasing the agronomic productivity of potato plants.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2020, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS)}, series = {Physics in Medicine}, volume = {10}, journal = {Physics in Medicine}, number = {100030}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4510}, doi = {10.1016/j.phmed.2020.100030}, pages = {8}, year = {2020}, abstract = {Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO-K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO-K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images.}, language = {en} } @article{ChoiFelderFelderetal.2020, author = {Choi, Chang-Hoon and Felder, Tim and Felder, J{\"o}rg and Tellmann, Lutz and Hong, Suk-Min and Wegener, Hans-Peter and Shah, N Jon and Ziemons, Karl}, title = {Design, evaluation and comparison of endorectal coils for hybrid MR-PET imaging of the prostate}, series = {Physics in Medicine \& Biology}, volume = {65}, journal = {Physics in Medicine \& Biology}, number = {11}, publisher = {IOP}, address = {Bristol}, issn = {0031-9155}, doi = {10.1088/1361-6560/ab87f8}, year = {2020}, abstract = {Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future.}, language = {en} } @article{HeinkeKnickerAlbracht2020, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Increased shoulder muscle stretch reflex elicitability in supine subject posture}, series = {Isokinetics and Exercise Science}, volume = {28}, journal = {Isokinetics and Exercise Science}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1878-5913}, doi = {10.3233/IES-192219}, pages = {139 -- 146}, year = {2020}, abstract = {BACKGROUND: Muscle stretch reflexes are widely used to examine neural muscle function. The knowledge of reflex response in muscles crossing the shoulder is limited. OBJECTIVE: To quantify reflex modulation according to various subject postures and different procedures of muscle pre-activation steering. METHODS: Thirteen healthy male participants performed two sets of external shoulder rotation stretches in various positions and with different procedures of muscle pre-activation steering on an isokinetic dynamometer over a range of two different pre-activation levels. All stretches were applied with a dynamometer acceleration of 104∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexive response was observed in all tested muscles in all experimental conditions. The reflex elicitation rate revealed a significant muscle main effect (F (5,288) = 2.358, ρ= 0.040; η2= 0.039; f= 0.637) and a significant test condition main effect (F (1,288) = 5.884, ρ= 0.016; η2= 0.020; f= 0.143). Reflex latency revealed a significant muscle pre-activation level main effect (F (1,274) = 5.008, ρ= 0.026; η2= 0.018; f= 0.469). CONCLUSION: Muscular reflexive response was more consistent in the primary internal rotators of the shoulder. Supine posture in combination with visual feedback of muscle pre-activation level enhanced the reflex elicitation rate.}, language = {en} } @article{MuschallikKippReckeretal.2020, author = {Muschallik, Lukas and Kipp, Carina Ronja and Recker, Inga and Bongaerts, Johannes and Pohl, Martina and Gelissen, Melanie and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase}, series = {Journal of Biotechnology}, volume = {202}, journal = {Journal of Biotechnology}, number = {Vol. 324}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2590-1559}, doi = {10.1016/j.jbiotec.2020.09.016}, pages = {61 -- 70}, year = {2020}, abstract = {The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.}, language = {en} } @article{JungStaat2020, author = {Jung, Alexander and Staat, Manfred}, title = {Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002]}, series = {GAMM-Mitteilungen}, volume = {43}, journal = {GAMM-Mitteilungen}, number = {4}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.202000011}, year = {2020}, language = {en} } @article{RauschHarbrechtKahmannetal.2020, author = {Rausch, Valentin and Harbrecht, Andreas and Kahmann, Stephanie Lucina and Fenten, Thomas and Jovanovic, Nebojsa and Hackl, Michael and M{\"u}ller, Lars P. and Staat, Manfred and Wegmann, Kilian}, title = {Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.04.010}, pages = {987.e1 -- 987.e8}, year = {2020}, abstract = {Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties.}, language = {en} } @article{QuittmannMeskemperAlbrachtetal.2020, author = {Quittmann, Oliver J. and Meskemper, Joshua and Albracht, Kirsten and Abel, Thomas and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs}, series = {Journal of Electromyography and Kinesiology}, volume = {51}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102402}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2020.102402}, year = {2020}, abstract = {Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA.}, language = {en} } @article{MalanHamerKaeneletal.2020, author = {Malan, Leone and Hamer, Mark and K{\"a}nel, Roland von and Kotliar, Konstantin and Wyk, Roelof D. van and Lambert, Gavin W. and Vilser, Walthard and Ziemssen, Tjalf and Schlaich, Markus P. and Smith, Wayne and Magnusson, Martin and Wentzel, Annemarie and Myburgh, Carlien E. and Steyn, Hendrik S. and Malan, Nico T.}, title = {Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study}, series = {Cardiovascular Journal of Africa}, volume = {26}, journal = {Cardiovascular Journal of Africa}, number = {31}, publisher = {Clinics Cardive Publishing}, address = {Durbanville}, issn = {1680-0745}, doi = {10.5830/CVJA-2020-031}, pages = {1 -- 12}, year = {2020}, language = {en} } @article{GossmannThomasHorvathetal.2020, author = {Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {105}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article 106843}, publisher = {Elsevier}, address = {New York, NY}, doi = {10.1016/j.vascn.2020.106843}, year = {2020}, language = {en} } @article{PoghossianJablonskiMolinnusetal.2020, author = {Poghossian, Arshak and Jablonski, Melanie and Molinnus, Denise and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, number = {Article 598103}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fpls.2020.598103}, pages = {1 -- 14}, year = {2020}, abstract = {Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.}, language = {en} } @article{PoghossianSchoening2020, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect eis chemical sensors and biosensors: A status report}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20195639}, pages = {Artikel 5639}, year = {2020}, abstract = {Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.}, language = {en} } @article{KoppSchunckGosauetal.2020, author = {Kopp, Alexander and Schunck, Laura and Gosau, Martin and Smeets, Ralf and Burg, Simon and Fuest, Sandra and Kr{\"o}ger, Nadja and Zinser, Max and Krohn, Sebastian and Behbahani, Mehdi and K{\"o}pf, Marius and Lauts, Lisa and Rutkowski, Rico}, title = {Influence of the casting concentration on the mechanical and optical properties of Fa/CaCl2-derived silk fibroin membranes}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18 art. no. 6704}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21186704}, year = {2020}, abstract = {In this study, we describe the manufacturing and characterization of silk fibroin membranes derived from the silkworm Bombyx mori. To date, the dissolution process used in this study has only been researched to a limited extent, although it entails various potential advantages, such as reduced expenses and the absence of toxic chemicals in comparison to other conventional techniques. Therefore, the aim of this study was to determine the influence of different fibroin concentrations on the process output and resulting membrane properties. Casted membranes were thus characterized with regard to their mechanical, structural and optical assets via tensile testing, SEM, light microscopy and spectrophotometry. Cytotoxicity was evaluated using BrdU, XTT, and LDH assays, followed by live-dead staining. The formic acid (FA) dissolution method was proven to be suitable for the manufacturing of transparent and mechanically stable membranes. The fibroin concentration affects both thickness and transparency of the membranes. The membranes did not exhibit any signs of cytotoxicity. When compared to other current scientific and technical benchmarks, the manufactured membranes displayed promising potential for various biomedical applications. Further research is nevertheless necessary to improve reproducible manufacturing, including a more uniform thickness, less impurity and physiological pH within the membranes.}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, language = {en} } @book{YoshinobuSchoening2020, author = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Light-addressing and chemical imaging technologies for electrochemical sensing}, editor = {Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, publisher = {MDPI}, address = {Basel}, isbn = {978-3-03943-029-1}, doi = {10.3390/books978-3-03943-029-1}, pages = {122 Pages}, year = {2020}, language = {en} } @inproceedings{IomdinaKiselevaKotliaretal.2020, author = {Iomdina, Elena N. and Kiseleva, Anna A. and Kotliar, Konstantin and Luzhnov, Petr V.}, title = {Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing}, series = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, booktitle = {2020 International Conference on Biomedical Innovations and Applications (BIA)}, isbn = {978-1-7281-7073-2}, doi = {10.1109/BIA50171.2020.9244511}, pages = {41 -- 44}, year = {2020}, language = {en} } @article{Stulpe2020, author = {Stulpe, Werner}, title = {Pairwise coexistence of effects versus coexistence}, series = {Journal of Physics: Conference Series}, volume = {1638}, journal = {Journal of Physics: Conference Series}, number = {012004}, publisher = {IOP}, address = {Bristol}, issn = {1742-6596}, doi = {10.1088/1742-6596/1638/1/012004}, pages = {1 -- 21}, year = {2020}, language = {en} } @article{DantismRoehlenDahmenetal.2020, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Dahmen, Markus and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth}, series = {Sensors and Actuators B: Chemical}, volume = {320}, journal = {Sensors and Actuators B: Chemical}, number = {Art. 128232}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128232}, year = {2020}, abstract = {As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated.}, language = {en} } @article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} }