@article{AlbannaKotliarLuekeetal.2018, author = {Albanna, Walid and Kotliar, Konstantin and L{\"u}ke, Jan Niklas and Alpdogan, Serdar and Conzen, Catharina and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Vilser, Walthard and Schneider, Toni and Schubert, Gerrit Alexander}, title = {Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis}, series = {Plos one}, volume = {13}, journal = {Plos one}, number = {10}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0204689}, pages = {e0204689}, year = {2018}, abstract = {Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.}, language = {en} } @article{BalakirskiKotliarPaulyetal.2018, author = {Balakirski, Galina and Kotliar, Konstantin and Pauly, Karolin J. and Krings, Laura K. and R{\"u}bben, Albert and Baron, Jens M. and Schmitt, Laurenz}, title = {Surgical Site Infections After Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience}, series = {Dermatologic Surgery}, journal = {Dermatologic Surgery}, number = {44 (12)}, publisher = {Wolters Kluwer}, doi = {10.1097/DSS.0000000000001615}, pages = {1525 -- 1536}, year = {2018}, abstract = {BACKGROUND Immunosuppression is often considered as an indication for antibiotic prophylaxis to prevent surgical site infections (SSI) while performing skin surgery. However, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. PATIENTS AND METHODS All patients of the Department of Dermatology and Allergology at the University Hospital of RWTH Aachen in Aachen, Germany, who underwent hospitalization for a dermatologic surgery between June 2016 and January 2017 (6 months), were followed up after surgery until completion of the wound healing process. The follow-up addressed the occurrence of SSI and the need for systemic antibiotics after the operative procedure. Immunocompromised patients were compared with immunocompetent patients. The investigation was conducted as a retrospective analysis of patient records. RESULTS The authors performed 284 dermatologic surgeries in 177 patients. Nineteen percent (54/284) of the skin surgery was performed on immunocompromised patients. The most common indications for surgical treatment were nonmelanoma skin cancer and malignant melanomas. Surgical site infections occurred in 6.7\% (19/284) of the cases. In 95\% (18/19), systemic antibiotic treatment was needed. Twenty-one percent of all SSI (4/19) were seen in immunosuppressed patients. CONCLUSION According to the authors' data, immunosuppression does not represent a significant risk factor for SSI after dermatologic surgery. However, larger prospective studies are needed to make specific recommendations on the use of antibiotic prophylaxis while performing skin surgery in these patients. The available data on complications after dermatologic surgery have improved over the past years. Particularly, additional risk factors have been identified for surgical site infections (SSI). Purulent surgical sites, older age, involvement of head, neck, and acral regions, and also the involvement of less experienced surgeons have been reported to increase the risk of the SSI after dermatologic surgeries.1 In general, the incidence of SSI after skin surgery is considered to be low.1,2 However, antibiotics in dermatologic surgeries, especially in the perioperative setting, seem to be overused,3,4 particularly regarding developing antibiotic resistances and side effects. Immunosuppression has been recommended to be taken into consideration as an additional indication for antibiotic prophylaxis to prevent SSI after skin surgery in special cases.5,6 However, these recommendations do not specify the exact dermatologic surgeries, and were not specifically developed for dermatologic surgery patients and treatments, but adopted from other surgical fields.6 According to the survey conducted on American College of Mohs Surgery members in 2012, 13\% to 29\% of the surgeons administered antibiotic prophylaxis to immunocompromised patients to prevent SSI while performing dermatologic surgery on noninfected skin,3 although this was not recommended by Journal of the American Academy of Dermatology Advisory Statement. Indeed, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. However, it is possible that due to the insufficient evidence on the risk of SSI occurrence in this patient group, dermatologic surgeons tend to overuse perioperative antibiotic prophylaxis. To make specific recommendations on the use of antibiotic prophylaxis in immunosuppressed patients in the field of skin surgery, more information about the incidence of SSI after dermatologic surgery in these patients is needed. The aim of this study was to fill this data gap by investigating whether there is an increased risk of SSI after skin surgery in immunocompromised patients compared with immunocompetent patients.}, language = {en} } @article{RittwegerAlbrachtFluecketal.2018, author = {Rittweger, J{\"o}rn and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Longa, Emanuela and Moriggi, Manuela and Seynnes, Olivier and Di Giulio, Irene and Tenori, Leonardo and Vignoli, Alessia and Capri, Miriam and Gelfi, Cecilia and Luchinat, Claudio and Franceschi, Claudio and Bottinelli, Roberto and Cerretelli, Paolo and Narici, Marco}, title = {Sarcolab pilot study into skeletal muscle's adaptation to longterm spaceflight}, series = {npj Microgravity}, volume = {4}, journal = {npj Microgravity}, number = {1}, publisher = {Nature Portfolio}, issn = {2373-8065}, doi = {10.1038/s41526-018-0052-1}, pages = {1 -- 9}, year = {2018}, language = {en} } @inproceedings{WaldmannVeraDachwaldetal.2018, author = {Waldmann, Christoph and Vera, Jean-Pierre de and Dachwald, Bernd and Strasdeit, Henry and Sohl, Frank and Hanff, Hendrik and Kowalski, Julia and Heinen, Dirk and Macht, Sabine and Bestmann, Ulf and Meckel, Sebastian and Hildebrandt, Marc and Funke, Oliver and Gehrt, Jan-J{\"o}ran}, title = {Search for life in ice-covered oceans and lakes beyond Earth}, series = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, booktitle = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, doi = {10.1109/AUV.2018.8729761}, year = {2018}, abstract = {The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.}, language = {en} } @article{ErmolaevNivokovMelnikovaetal.2018, author = {Ermolaev, A.P. and Nivokov, I.A. and Melnikova, L.I. and Kotliar, Konstantin}, title = {Сравнительная характеристика химического состава витреального содержимого кадаверных глаз и глаз с рефрактерной терминальной глаукомой}, series = {Vestnik oftalmologii}, volume = {5}, journal = {Vestnik oftalmologii}, number = {2}, publisher = {Media Sfera}, address = {Moskau}, doi = {10.17116/oftalma2018134051195}, pages = {195 -- 201}, year = {2018}, abstract = {Purpose — to compare the chemical elemental composition of vitreous cavity content taken from cadaveric eyes compared to samples taken from the eyes with terminal stage refractory glaucoma with decompensated intraocular pressure (IOP). Material and methods. The vitreous contents of the eyes from 2 groups were studied. The 1st group included 15 cadaveric eyes; the 2nd group included 15 eyes with refractory glaucoma in the terminal stage of the disease with decompensated IOP in patients with hypertension pain. The vitreal content samples were taken in the course of antiglaucoma surgery aimed at preserving the eye as an organ and involving employment of drainage in the vitreous cavity. The study of virtual contents was carried out on energy dispersive spectrometer Oxford X-Max 50 integrated into scanning electron microscope Zeiss EVO LS10. Results. Increased concentrations of Kalium and Phosphorus were detected in the vitreous content of cadaveric eyes compared with the vitreal content from the eyes with terminal glaucoma with decompensated IOP taken in vivo (K — 0.172/0.093; P — 0.045/0.025 mmol/L). In the vitreous cavity in the eyes with end-stage glaucoma with decompensated IOP, the concentration of Nitrogen was higher in comparison with human cadaver eyes (2.030/1.424 mmol/L). Conclusion. The increased concentrations of Kalium and Phosphorus in the vitreous content of cadaveric eyes is associated with postmortem autolytic processes and with the release of intracellular content in the destruction of cell membranes. The increased Nitrogen concentration in the vitreal contents of the eyes with terminal stage glaucoma with decompensated IOP may be associated with the presence of osmotically active nitrogen-containing compounds in the eyes with increased IOP.}, language = {ru} } @article{CiritsisHorbachStaatetal.2018, author = {Ciritsis, Alexander and Horbach, Andreas and Staat, Manfred and Kuhl, Christiane K. and Kraemer, Nils Andreas}, title = {Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo}, series = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, volume = {106}, journal = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, number = {2}, publisher = {Wiley}, address = {New York, NY}, issn = {1552-4981}, doi = {10.1002/jbm.b.33877}, pages = {827 -- 833}, year = {2018}, abstract = {Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4\% for TPU and of 1.2\% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827-833, 2018.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{KeutmannStaatLaack2018, author = {Keutmann, Sabine and Staat, Manfred and Laack, Walter van}, title = {Untersuchung der thermischen Auswirkung von therapeutischem Ultraschall}, volume = {7}, number = {10}, publisher = {Deutscher {\"A}rzte-Verl.}, address = {K{\"o}ln}, issn = {2193-5793}, pages = {518 -- 522}, year = {2018}, abstract = {Zusammenfassung: In der Orthop{\"a}die z{\"a}hlt der therapeutische Ultraschall als Mittel zur Pr{\"a}vention und Therapiebegleitung. Er hat mechanische, thermische und physiko-chemische Auswirkungen auf den menschlichen K{\"o}rper. Um mehr Erkenntnisse {\"u}ber die thermischen Auswirkungen zu erlangen, wurden Versuche an einem Hydrogel-Phantom und an Probanden durchgef{\"u}hrt. Dabei entstand eine signifikante Erw{\"a}rmung des Gewebes, welche beim Probandenversuch an der Oberfl{\"a}che und beim Hydrogelversuch in der Tiefe gemessen wurde. Summary: In orthopaedics, therapeutic ultrasound is a tool of prevention and therapy support. It has mechanical, thermal and physico-chemical effects on the human body. Tests with a hydrogel phantom and with human probands have been performed in order to obtain more knowledge about their thermal effects. Both tests measured temperature increases in cell tissue, on the surface with the human proband test and in depth with the hydrogel phantom test.}, language = {de} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Herč{\´i}k, David and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron D and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and T{\´o}th, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Small spacecraft based multiple near-earth asteroid rendezvous and landing with near-term solar sails and 'Now-Term 'technologies}, series = {69 th International Astronautical Congress (IAC)}, booktitle = {69 th International Astronautical Congress (IAC)}, pages = {1 -- 18}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design the mission which then interacts with the object in a complex fashion. To open up strategic approaches, much broader in-depth characterization of potential target objects would be highly desirable. In SSSB science missions, MASCOT-like nano-landers and instrument carriers which integrate at the instrument level to their mothership have met interest. By its size, MASCOT is compatible with small interplanetary missions. The DLR-ESTEC Gossamer Roadmap Science Working Groups' studies identified Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The Solar Polar Orbiter (SPO) study showed the ability to access any inclination, theDisplaced-L1 (DL1) mission operates close to Earth, where objects of interest to PD and for ISRU reside. Other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter, and significant progress has been made to explore the performance envelope of near-term solar sails for MNR. However, it is difficult for sailcraft to interact physically with a SSSB. We expand and extend the philosophy of the recently qualified DLR Gossamer solar sail deployment technology using efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions by synergetic integration and operation of sail and lander. The MASCOT design concept and its characteristic features have created an ideal counterpart for thisand has already been adapted to the needs of the AIM spacecraft, former part of the NASA-ESA AIDA missionDesigning the 69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. IAC-18-F1.2.3 Page 2 of 17 combined spacecraft for piggy-back launch accommodation enables low-cost massively parallel access to the NEA population.}, language = {en} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian and Herč{\´i}k, David and Herique, Alain and Ho, Tra-Mi and Jahnke, Rico and Koch, Aaron and Kofman, Wlodek and Koncz, Alexander and Krause, Christian and Lange, Caroline and Lichtenheldt, Roy and Maiwald, Volker and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Tardivel, Simon and Toth, Norbert and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions}, series = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, booktitle = {2nd Asteroid Science Intersections with In-Space Mine Engineering - ASIME 2018}, pages = {1 -- 33}, year = {2018}, abstract = {Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2018, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J and Paulsen, G{\o}ran and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R}, title = {Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing}, series = {Frontiers in physiology}, journal = {Frontiers in physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00794}, pages = {11 Seiten}, year = {2018}, abstract = {During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18\%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8\%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21\%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.}, language = {en} } @article{HacklAndermahrStaatetal.2017, author = {Hackl, M. and Andermahr, J. and Staat, Manfred and Bremer, I. and Borggrefe, J. and Prescher, A. and M{\"u}ller, L. P. and Wegmann, K.}, title = {Suture button reconstruction of the central band of the interosseous membrane in Essex-Lopresti lesions: a comparative biomechanical investigation}, series = {The Journal of Hand Surgery (European Volume)}, volume = {42}, journal = {The Journal of Hand Surgery (European Volume)}, number = {4}, publisher = {Sage}, address = {London}, issn = {2043-6289 (Online)}, doi = {10.1177/1753193416665943}, pages = {370 -- 376}, year = {2017}, language = {en} } @misc{ArtmannLinderBayeretal.2017, author = {Artmann, Gerhard and Linder, Peter and Bayer, Robin and Gossmann, Matthias}, title = {Celldrum electrode arrangement for measuring mechanical stress [Patent of invention]}, publisher = {WIPO}, address = {Geneva}, pages = {18 Seiten}, year = {2017}, abstract = {The invention pertains to a CellDrum electrode arrangement for measuring mechanical stress, comprising a mechanical holder (1 ) and a non-conductive membrane (4), whereby the membrane (4) is at least partially fixed at its circumference to the mechanical holder (1), keeping it in place when the membrane (4) may bend due to forces acting on the membrane (4), the mechanical holder (1) and the membrane (4) forming a container, whereby the membrane (1) within the container comprises an cell- membrane compound layer or biological material (3) adhered to the deformable membrane 4 which in response to stimulation by an agent may exert mechanical stress to the membrane (4) such that the membrane bending stage changes whereby the container may be filled with an electrolyte, whereby an electric contact (2) is arranged allowing to contact said electrolyte when filled into to the container, whereby within a predefined geometry to the fixing of the membrane (4) an electrode (7) is arranged, whereby the electrode (7) is electrically insulated with respect to the electric contact (2) as well as said electrolyte, whereby mechanical stress due to an agent may be measured as a change in capacitance.}, language = {en} } @article{SavitskayaKistaubayevaDigeletal.2017, author = {Savitskaya, I. S. and Kistaubayeva, A. S. and Digel, Ilya and Shokatayeva, D. H.}, title = {Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials}, series = {Eurasian Chemico-Technological Journal}, volume = {19}, journal = {Eurasian Chemico-Technological Journal}, number = {3}, issn = {2522-4867}, doi = {10.18321/ectj670}, pages = {255 -- 264}, year = {2017}, language = {en} } @techreport{DigelKayser2017, author = {Digel, Ilya and Kayser, Peter}, title = {VirEx - Eliminierung von Quarant{\"a}ne relevanten Viroiden aus Kulturpflanzen Abschlussbericht des Projektes KMU-innovativ-12: Teilprojekt 3}, publisher = {Institut f{\"u}r Bioengineering (IfB) der FH Aachen}, address = {Aachen}, doi = {10.2314/GBV:1012136345}, year = {2017}, language = {de} } @incollection{DuongNguyenStaat2017, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Advances in Composite Material}, booktitle = {Advances in Composite Material}, publisher = {Scientific Research Publishing}, address = {Wuhan}, isbn = {978-1-61896-300-0 (Hardcover), 978-1-61896-299-7 (Paperback)}, pages = {316}, year = {2017}, language = {en} } @article{HorbachDuongStaat2017, author = {Horbach, Andreas and Duong, Minh Tuan and Staat, Manfred}, title = {Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement}, series = {Journal of the mechanical behavior of biomedical materials}, volume = {74}, journal = {Journal of the mechanical behavior of biomedical materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1751-6161}, doi = {10.1016/j.jmbbm.2017.06.012}, pages = {400 -- 410}, year = {2017}, language = {en} } @article{MichaelMayerWeberetal.2017, author = {Michael, Hackl and Mayer, Katharina and Weber, Mareike and Staat, Manfred and van Riet, Roger and Burkhart, Klau Josef and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Plate osteosynthesis of proximal ulna fractures : a biomechanical micromotion analysis}, series = {The journal of hand surgery}, volume = {42}, journal = {The journal of hand surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2017.05.014}, pages = {834.e1 -- 834.e7}, year = {2017}, language = {en} } @inproceedings{AbelPerezVianaCiritsisetal.2017, author = {Abel, Alexander and P{\´e}rez-Viana, Daniel and Ciritsis, Bernard and Staat, Manfred}, title = {Prevention of femur neck fractures through femoroplasty}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {114 -- 115}, year = {2017}, language = {en} } @inproceedings{BirgelLeschingerWegmannetal.2017, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {116 -- 117}, year = {2017}, language = {en} } @inproceedings{JabbariBhattaraiAndingetal.2017, author = {Jabbari, Medisa and Bhattarai, Aroj and Anding, Ralf and Staat, Manfred}, title = {Biomechanical simulation of different prosthetic meshes for repairing uterine/vaginal vault prolapse}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {118 -- 119}, year = {2017}, language = {en} } @inproceedings{SuryoputriGhaderiLinderetal.2017, author = {Suryoputri, Nathania and Ghaderi, Aydin and Linder, Peter and Kotliar, Konstantin and G{\"o}ttler, Jens and Sorg, Christian and Grimmer, Timo}, title = {Does hemodynamic response function change in Alzheimer disease?}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {92}, year = {2017}, language = {en} } @inproceedings{SchneiderAlHakimKayseretal.2017, author = {Schneider, Oliver and Al Hakim, Taher and Kayser, Peter and Digel, Ilya}, title = {Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {96 -- 97}, year = {2017}, language = {en} } @inproceedings{SchlemmerPorstBassametal.2017, author = {Schlemmer, Katharina and Porst, Dariusz and Bassam, Rasha and Artmann, Gerhard and Digel, Ilya}, title = {Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {100 -- 101}, year = {2017}, language = {en} } @inproceedings{KuhlenDigel2017, author = {Kuhlen, Max and Digel, Ilya}, title = {Fluorescence signatures and detection limits of ubiquitous terrestrial bio-compounds}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {102 -- 103}, year = {2017}, language = {en} } @inproceedings{deHondePorstDigel2017, author = {de Honde, Lukas and Porst, Dariusz and Digel, Ilya}, title = {A randomized, observational thermographic study of the neck region before and after a physiotherapeutic intervention}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Fischerauer, Alice}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {122 -- 123}, year = {2017}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @inproceedings{GrundmannMessBieleetal.2017, author = {Grundmann, Jan Thimo and Meß, Jan-Gerd and Biele, Jens and Seefeldt, Patric and Dachwald, Bernd and Spietz, Peter and Grimm, Christian D. and Spr{\"o}witz, Tom and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft in small solar system body applications}, series = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, booktitle = {IEEE Aerospace Conference 2017, Big Sky, Montana, USA}, organization = {IEEE Aerospace Conference}, isbn = {978-1-5090-1613-6}, doi = {10.1109/AERO.2017.7943626}, pages = {1 -- 20}, year = {2017}, language = {en} } @article{TranMottaghyArltKoerferetal.2017, author = {Tran, Linda and Mottaghy, K. and Arlt-K{\"o}rfer, Sabine and Waluga, Christian and Behbahani, Mehdi}, title = {An experimental study of shear-dependent human platelet adhesion and underlying protein-binding mechanisms in a cylindrical Couette system}, series = {Biomedizinische Technik}, volume = {62}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2015-0034}, pages = {383 -- 392}, year = {2017}, language = {en} } @incollection{TranTranMatthiesetal.2017, author = {Tran, N. T. and Tran, Thanh Ngoc and Matthies, M. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming}, series = {Advances in Direct Methods for Materials and Structures}, booktitle = {Advances in Direct Methods for Materials and Structures}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-59810-9}, doi = {10.1007/978-3-319-59810-9_6}, pages = {85 -- 103}, year = {2017}, abstract = {In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis.}, language = {en} } @article{AlbannaLuekeSjapicetal.2017, author = {Albanna, Walid and Lueke, Jan Niklas and Sjapic, Volha and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Sjapic, Sergej and Alpdogan, Serdan and Schneider, Toni and Schubert, Gerrit Alexander and Neumaier, Felix}, title = {Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina}, series = {Current Eye Research}, journal = {Current Eye Research}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1460-2202}, doi = {10.1080/02713683.2017.1339807}, pages = {1 -- 9}, year = {2017}, language = {en} } @article{SeifarthGrosseGrossmannetal.2017, author = {Seifarth, Volker and Grosse, Joachim O. and Grossmann, Matthias and Janke, Heinz Peter and Arndt, Patrick and Koch, Sabine and Epple, Matthias and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation}, series = {Journal of Biomaterials Applications}, volume = {32}, journal = {Journal of Biomaterials Applications}, number = {3}, publisher = {Sage}, address = {London}, issn = {1530-8022}, doi = {10.1177/0885328217723178}, pages = {321 -- 330}, year = {2017}, language = {en} } @article{KotliarHauserOrtneretal.2017, author = {Kotliar, Konstantin and Hauser, Christine and Ortner, Marion and Muggenthaler, Claudia and Diehl-Schmid, Janine and Angermann, Susanne and Hapfelmeier, Alexander and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered neurovascular coupling as measured by optical imaging: a biomarker for Alzheimer's disease}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-017-13349-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2017, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J. and Meier, Rahel and Mojsen-Moeller, Jens and Seynnes, Olivier R.}, title = {Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task}, series = {Journal of Experimental Biology}, volume = {220}, journal = {Journal of Experimental Biology}, number = {22}, issn = {0022-0949}, doi = {10.1242/jeb.164111}, pages = {4141 -- 4149}, year = {2017}, language = {en} } @misc{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Reply to the letter to the editor: shortening osteotomy of the proximal radius}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {10}, doi = {10.1007/s00167-017-4666-8}, pages = {3328 -- 3329}, year = {2017}, language = {en} } @article{MuellerJungAhammer2017, author = {M{\"u}ller, Wolfram and Jung, Alexander and Ahammer, Helmut}, title = {Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 2464}, publisher = {Springer Nature}, address = {Cham}, isbn = {2045-2322}, doi = {10.1038/s41598-017-02665-5}, pages = {1 -- 11}, year = {2017}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @article{LanzlKotliar2017, author = {Lanzl, I. and Kotliar, Konstantin}, title = {K{\"o}nnen Anti-VEGF-Injektionen Glaukom oder okul{\"a}re Hypertension verursachen?}, series = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, volume = {234}, journal = {Klinische Monatsbl{\"a}tter f{\"u}r Augenheilkunde}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0023-2165}, doi = {10.1055/s-0043-101819}, pages = {191 -- 193}, year = {2017}, language = {de} } @article{ZangeSchopenAlbrachtetal.2017, author = {Zange, Jochen and Schopen, Kathrin and Albracht, Kirsten and Gerlach, Darius A. and Frings-Meuthen, Petra and Maffiuletti, Nicola A. and Bloch, Wilhelm and Rittweger, J{\"o}rn}, title = {Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial}, series = {Plos one}, volume = {12}, journal = {Plos one}, number = {2}, doi = {10.1371/journal.pone.0171562}, year = {2017}, language = {en} } @article{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {7}, publisher = {Springer}, address = {Berlin}, issn = {1433-7347}, doi = {10.1007/s00167-017-4468-z}, pages = {2280 -- 2288}, year = {2017}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple NEA rendezvous mission: Solar sailing options}, series = {Fourth International Symposium on Solar Sailing}, booktitle = {Fourth International Symposium on Solar Sailing}, pages = {1 -- 11}, year = {2017}, abstract = {The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58\% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.}, language = {en} } @incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @article{GossmannFrotscherLinderetal.2016, author = {Goßmann, Matthias and Frotscher, Ralf and Linder, Peter and Bayer, Robin and Epple, U. and Staat, Manfred and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard}, title = {Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells}, series = {Cellular physiology and biochemistry}, volume = {38}, journal = {Cellular physiology and biochemistry}, number = {3}, publisher = {Karger}, address = {Basel}, issn = {1421-9778 (Online)}, doi = {10.1159/000443124}, pages = {1182 -- 1198}, year = {2016}, abstract = {Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.}, language = {en} }