@article{ThomaGardiFisheretal.2024, author = {Thoma, Andreas and Gardi, Alessandro and Fisher, Alex and Braun, Carsten}, title = {Improving local path planning for UAV flight in challenging environments by refining cost function weights}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00741-x}, pages = {12 Seiten}, year = {2024}, abstract = {Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10\%.}, language = {en} } @article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @article{SchopenShahEschetal.2024, author = {Schopen, Oliver and Shah, Neel and Esch, Thomas and Shabani, Bahman}, title = {Critical quantitative evaluation of integrated health management methods for fuel cell applications}, series = {International Journal of Hydrogen Energy}, volume = {70}, journal = {International Journal of Hydrogen Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-3199}, doi = {10.1016/j.ijhydene.2024.05.156}, pages = {370 -- 388}, year = {2024}, abstract = {Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system.}, language = {en} }