@inproceedings{LangohrBungCrookston2022, author = {Langohr, Philipp and Bung, Daniel Bernhard and Crookston, Brian M.}, title = {Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022738}, pages = {2313 -- 2318}, year = {2022}, abstract = {The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs.}, language = {en} } @inproceedings{CrookstonBung2022, author = {Crookston, Brian M. and Bung, Daniel Bernhard}, title = {Application of RGB-D cameras in hydraulic laboratory studies}, series = {Proceedings of the 39th IAHR World Congress}, booktitle = {Proceedings of the 39th IAHR World Congress}, editor = {Ortega-S{\´a}nchez, Miguel}, publisher = {International Association for Hydro-Environment Engineering and Research (IAHR)}, address = {Madrid}, isbn = {978-90-832612-1-8}, issn = {2521-7119 (print)}, doi = {10.3850/IAHR-39WC252171192022964}, pages = {5127 -- 5133}, year = {2022}, abstract = {Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors' experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes.}, language = {en} } @inproceedings{MayntzKeimerDahmannetal.2022, author = {Mayntz, Joscha and Keimer, Jona and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Electrical Drive and Regeneration in General Aviation Flight with Propellers}, series = {Deutscher Luft- und Raumfahrtkongress 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2020}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530100}, pages = {8 Seiten}, year = {2022}, abstract = {Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft.}, language = {en} } @misc{KeimerGirbigMayntzetal.2022, author = {Keimer, Jona and Girbig, Leo and Mayntz, Joscha and Tegtmeyer, Philipp and Wendland, Frederik and Dahman, Peter and Fisher, Alex and Dorrington, Graham}, title = {Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions}, series = {AIAA AVIATION 2022 Forum}, journal = {AIAA AVIATION 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-4118}, year = {2022}, abstract = {The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.}, language = {en} } @inproceedings{LosseGehrkeUllrichetal.2022, author = {Losse, Ann-Kathrin and Gehrke, Melanie and Ullrich, Andr{\´e} and Czarnecki, Christian and Sultanow, Eldar and Breithaupt, Carsten and Koch, Christian}, title = {Entwicklung einer Open-Data-Referenzarchitektur f{\"u}r die Luftfahrtindustrie}, series = {INFORMATIK 2022 - Informatik in den Naturwissenschaften, Proceedings}, booktitle = {INFORMATIK 2022 - Informatik in den Naturwissenschaften, Proceedings}, publisher = {GI - Gesellschaft f{\"u}r Informatik}, address = {Bonn}, isbn = {978-3-88579-720-3}, issn = {1617-5468}, doi = {10.18420/inf2022_103}, pages = {1203 -- 1209}, year = {2022}, abstract = {Open Data impliziert die freie Zug{\"a}nglichkeit, Verf{\"u}gbarkeit und Wiederverwendbarkeit von Datens{\"a}tzen. Obwohl hochwertige Datens{\"a}tze {\"o}ffentlich verf{\"u}gbar sind, ist der Zugang zu diesen und die Transparenz {\"u}ber die Formate nicht immer gegeben. Dies mindert die optimale Nutzung des Potenzials zur Wertsch{\"o}pfung, trotz der vorherrschenden Einigkeit {\"u}ber ihre Chancen. Denn Open Data erm{\"o}glicht das Vorantreiben von Compliance-Themen wie Transparenz und Rechenschaftspflicht bis hin zur F{\"o}rderung von Innovationen. Die Nutzung von Open Data erfordert Mut und eine gemeinsame Anstrengung verschiedener Akteure und Branchen. Im Rahmen des vorliegenden Beitrags werden auf Grundlage des Design Science-Ansatzes eine Open Data Capability Map sowie darauf aufbauend eine Datenarchitektur f{\"u}r Open Data in der Luftfahrtindustrie an einem Beispiel entwickelt.}, language = {de} } @article{HarrisKleefeld2022, author = {Harris, Isaac and Kleefeld, Andreas}, title = {Analysis and computation of the transmission eigenvalues with a conductive boundary condition}, series = {Applicable Analysis}, volume = {101}, journal = {Applicable Analysis}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1789598}, pages = {1880 -- 1895}, year = {2022}, abstract = {We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber-Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown.}, language = {en} } @inproceedings{BurgethKleefeldZhangetal.2022, author = {Burgeth, Bernhard and Kleefeld, Andreas and Zhang, Eugene and Zhang, Yue}, title = {Towards Topological Analysis of Non-symmetric Tensor Fields via Complexification}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Baudrier, {\´E}tienne and Naegel, Beno{\^i}t and Kr{\"a}henb{\"u}hl, Adrien and Tajine, Mohamed}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-19897-7}, doi = {10.1007/978-3-031-19897-7_5}, pages = {48 -- 59}, year = {2022}, abstract = {Fields of asymmetric tensors play an important role in many applications such as medical imaging (diffusion tensor magnetic resonance imaging), physics, and civil engineering (for example Cauchy-Green-deformation tensor, strain tensor with local rotations, etc.). However, such asymmetric tensors are usually symmetrized and then further processed. Using this procedure results in a loss of information. A new method for the processing of asymmetric tensor fields is proposed restricting our attention to tensors of second-order given by a 2x2 array or matrix with real entries. This is achieved by a transformation resulting in Hermitian matrices that have an eigendecomposition similar to symmetric matrices. With this new idea numerical results for real-world data arising from a deformation of an object by external forces are given. It is shown that the asymmetric part indeed contains valuable information.}, language = {en} } @article{KleefeldZimmermann2022, author = {Kleefeld, Andreas and Zimmermann, M.}, title = {Computing Elastic Interior Transmission Eigenvalues}, series = {Integral Methods in Science and Engineering}, journal = {Integral Methods in Science and Engineering}, editor = {Constanda, Christian and Bodmann, Bardo E.J. and Harris, Paul J.}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-031-07171-3}, doi = {10.1007/978-3-031-07171-3_10}, pages = {139 -- 155}, year = {2022}, abstract = {An alternative method is presented to numerically compute interior elastic transmission eigenvalues for various domains in two dimensions. This is achieved by discretizing the resulting system of boundary integral equations in combination with a nonlinear eigenvalue solver. Numerical results are given to show that this new approach can provide better results than the finite element method when dealing with general domains.}, language = {en} } @incollection{Golland2022, author = {Golland, Alexander}, title = {Kommentierung von \S 26 Telekommunikation-Telemedien-Datenschutzgesetz}, series = {TTDSG}, booktitle = {TTDSG}, editor = {Riechert, Anne and Wilmer, Thomas}, publisher = {Erich Schmidt}, address = {Berlin}, isbn = {978-3-503-20978-1}, pages = {439 -- 474}, year = {2022}, language = {de} } @incollection{Golland2022, author = {Golland, Alexander}, title = {Kommentierung von \S 7 Telekommunikation-Telemedien-Datenschutzgesetz}, series = {TTDSG}, booktitle = {TTDSG}, editor = {Riechert, Anne and Wilmer, Thomas}, publisher = {Erich Schmidt}, address = {Berlin}, isbn = {978-3-503-20978-1}, pages = {145 -- 151}, year = {2022}, language = {de} }