@incollection{PriedeFerrein2013, author = {Priede, Gareth and Ferrein, Alexander}, title = {Towards passive walking for the fully-actuated biped robot Nao}, series = {Emerging trends in computing, informatics, systems sciences, and engineering. (Lecture notes in electrical engineering : vol. 151)}, booktitle = {Emerging trends in computing, informatics, systems sciences, and engineering. (Lecture notes in electrical engineering : vol. 151)}, publisher = {Springer}, address = {New York, NY}, isbn = {978-1-4614-3557-0 ; 978-1-4614-3558-7}, doi = {10.1007/978-1-4614-3558-7_18}, pages = {225 -- 236}, year = {2013}, abstract = {Many biped robots deploy a form of gait that follows the zero moment point (ZMP) approach, that is, the robot is in a stable position at any point in time. This requires the robot to be fully actuated. While very stable, the draw-backs of this approach are a fairly slow gait and high energy consumption. An alternative approach is the so-called passive-dynamic walking, where the gait makes use of the inertia and dynamic stability of the robot. In this paper we describe our ongoing work of combining the principles of passive-dynamic walking on the fully-actuated biped robot Nao, which is also deployed for robotic soccer applications. We present a simple controller that allows the robot to stably rock sidewards, showing a closed limit-cycle. We discuss first results of superimposing a forward motion on the sidewards motion. Based on this we expect to endow the Nao with a fast, robust, and stable passive-dynamic walk on the fully-actuated Nao in the future.}, language = {en} }