@article{TippkoetterRoth2020, author = {Tippk{\"o}tter, Nils and Roth, Jasmine}, title = {Purified Butanol from Lignocellulose - Solvent-Impregnated Resins for an Integrated Selective Removal}, series = {Chemie Ingenieur Technik}, volume = {92}, journal = {Chemie Ingenieur Technik}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2640}, doi = {10.1002/cite.202000200}, pages = {1741 -- 1751}, year = {2020}, abstract = {In traditional microbial biobutanol production, the solvent must be recovered during fermentation process for a sufficient space-time yield. Thermal separation is not feasible due to the boiling point of n-butanol. As an integrated and selective solid-liquid separation alternative, solvent impregnated resins (SIRs) were applied. Two polymeric resins were evaluated and an extractant screening was conducted. Vacuum application with vapor collection in fixed-bed column as bioreactor bypass was successfully implemented as butanol desorption step. In course of further increasing process economics, fermentation with renewable lignocellulosic substrates was conducted using Clostridium acetobutylicum. Utilization of SIR was shown to be a potential strategy for solvent removal from fermentation broth, while application of a bypass column allows for product removal and recovery at once.}, language = {en} } @misc{StadtmuellerTippkoetterUlber2015, author = {Stadtm{\"u}ller, Ralf and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Method for production of single-stranded macronucleotides}, year = {2015}, abstract = {The invention relates to a method for production of single-stranded macronucleotides by amplifying and ligating an extended monomeric single-stranded target nucleic acid sequence (targetss) into a repetitive cluster of double-stranded target nucleic acid sequences (targetds), and subsequently cloning the construct into a vector (aptagene vector). The aptagene vector is transformed into host cells for replication of the aptagene and isolated in order to optain single-stranded target sequences (targetss). The invention also relates to single-stranded nucleic acids, produced by a method of the invention.}, language = {en} } @article{CapitainWagnerHummeletal.2021, author = {Capitain, Charlotte and Wagner, Sebastian and Hummel, Joana and Tippk{\"o}tter, Nils}, title = {Investigation of C-N Formation Between Catechols and Chitosan for the Formation of a Strong, Novel Adhesive Mimicking Mussel Adhesion}, series = {Waste and Biomass Valorization}, volume = {12}, journal = {Waste and Biomass Valorization}, publisher = {Springer Nature}, address = {Cham}, issn = {1877-265X}, doi = {10.1007/s12649-020-01110-5}, pages = {1761 -- 1779}, year = {2021}, language = {en} } @article{CapitainRossJonesMoehringetal.2020, author = {Capitain, Charlotte and Ross-Jones, Jesse and M{\"o}hring, Sophie and Tippk{\"o}tter, Nils}, title = {Differential scanning calorimetry for quantification of polymer biodegradability in compost}, series = {International Biodeterioration \& Biodegradation}, volume = {149}, journal = {International Biodeterioration \& Biodegradation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0964-8305}, doi = {10.1016/j.ibiod.2020.104914}, pages = {In Press, Article number 104914}, year = {2020}, abstract = {The objective of this study is the establishment of a differential scanning calorimetry (DSC) based method for online analysis of the biodegradation of polymers in complex environments. Structural changes during biodegradation, such as an increase in brittleness or crystallinity, can be detected by carefully observing characteristic changes in DSC profiles. Until now, DSC profiles have not been used to draw quantitative conclusions about biodegradation. A new method is presented for quantifying the biodegradation using DSC data, whereby the results were validated using two reference methods. The proposed method is applied to evaluate the biodegradation of three polymeric biomaterials: polyhydroxybutyrate (PHB), cellulose acetate (CA) and Organosolv lignin. The method is suitable for the precise quantification of the biodegradability of PHB. For CA and lignin, conclusions regarding their biodegradation can be drawn with lower resolutions. The proposed method is also able to quantify the biodegradation of blends or composite materials, which differentiates it from commonly used degradation detection methods.}, language = {en} } @article{EngelGemuendeHoltmannetal.2019, author = {Engel, Mareike and Gem{\"u}nde, Andre and Holtmann, Dirk and M{\"u}ller-Renno, Christine and Ziegler, Christiane and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Clostridium acetobutylicum's connecting world: cell appendage formation in bioelectrochemical systems}, series = {ChemElectroChem}, journal = {ChemElectroChem}, number = {Accepted Article}, publisher = {Wiley}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901656}, year = {2019}, language = {en} } @article{EngelBayerHoltmannetal.2019, author = {Engel, Mareike and Bayer, Hendrik and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Flavin secretion of Clostridium acetobutylicum in a bioelectrochemical system - Is an iron limitation involved?}, series = {Bioelectrochemistry}, journal = {Bioelectrochemistry}, number = {In Press, Accepted Manuscript}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2019.05.014}, year = {2019}, language = {en} } @book{WagemannTippkoetter2019, author = {Wagemann, Kurt and Tippk{\"o}tter, Nils}, title = {Biorefineries / Kurt Wagemann, Nils Tippk{\"o}tter (editors)}, series = {Advances in biochemical engineering/biotechnology book series (ABE)}, journal = {Advances in biochemical engineering/biotechnology book series (ABE)}, publisher = {Springer}, address = {Cham (Switzerland)}, isbn = {978-3-319-97117-9}, doi = {10.1007/978-3-319-97119-3}, pages = {VI, 549 Seiten}, year = {2019}, language = {en} } @article{EngelHoltmannUlberetal.2018, author = {Engel, Mareike and Holtmann, Dirk and Ulber, Roland and Tippk{\"o}tter, Nils}, title = {Increased Biobutanol Production by Mediator-Less Electro-Fermentation}, series = {Biotechnology Journal}, journal = {Biotechnology Journal}, number = {Volume 14, Issue 4}, publisher = {Wiley-VCH}, issn = {1860-7314}, doi = {10.1002/biot.201800514}, pages = {Artikel 1800514}, year = {2018}, abstract = {A future bio-economy should not only be based on renewable raw materials but also in the raise of carbon yields of existing production routes. Microbial electrochemical technologies are gaining increased attention for this purpose. In this study, the electro-fermentative production of biobutanol with C. acetobutylicum without the use of exogenous mediators is investigated regarding the medium composition and the reactor design. It is shown that the use of an optimized synthetic culture medium allows higher product concentrations, increased biofilm formation, and higher conductivities compared to a synthetic medium supplemented with yeast extract. Moreover, the optimization of the reactor system results in a doubling of the maximum product concentrations for fermentation products. When a working electrode is polarized at -600 mV vs. Ag/AgCl, a shift from butyrate to acetone and butanol production is induced. This leads to an increased final solvent yield of Yᴀᴃᴇ = 0.202 gg⁻¹ (control 0.103 gg⁻¹), which is also reflected in a higher carbon efficiency of 37.6\% compared to 23.3\% (control) as well as a fourfold decrease in simplified E-factor to 0.43. The results are promising for further development of biobutanol production in bioelectrochemical systems in order to fulfil the principles of Green Chemistry.}, language = {en} } @incollection{DuweTippkoetterUlber2018, author = {Duwe, A. and Tippk{\"o}tter, Nils and Ulber, R.}, title = {Lignocellulose-Biorefinery: Ethanol-Focused}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, doi = {10.1007/10_2016_72}, pages = {177 -- 215}, year = {2018}, abstract = {The development prospects of the world markets for petroleum and other liquid fuels are diverse and partly contradictory. However, comprehensive changes for the energy supply of the future are essential. Notwithstanding the fact that there are still very large deposits of energy resources from a geological point of view, the finite nature of conventional oil reserves is indisputable. To reduce our dependence on oil, the EU, the USA, and other major economic zones rely on energy diversification. For this purpose, alternative materials and technologies are being sought, and is most obvious in the transport sector. The objective is to progressively replace fossil fuels with renewable and more sustainable fuels. In this respect, biofuels have a pre-eminent position in terms of their capability of blending with fossil fuels and being usable in existing cars without substantial modification. Ethanol can be considered as the primary renewable liquid fuel. In this chapter enzymes, micro-organisms, and processes for ethanol production based on renewable resources are described.}, language = {en} } @incollection{TippkoetterMoehringRothetal.2019, author = {Tippk{\"o}tter, Nils and M{\"o}hring, Sophie and Roth, Jasmine and Wulfhorst, Helene}, title = {Logistics of lignocellulosic feedstocks: preprocessing as a preferable option}, series = {Biorefineries}, booktitle = {Biorefineries}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97117-9}, doi = {10.1007/10_2017_58}, pages = {43 -- 68}, year = {2019}, abstract = {In comparison to crude oil, biorefinery raw materials are challenging in concerns of transport and storage. The plant raw materials are more voluminous, so that shredding and compacting usually are necessary before transport. These mechanical processes can have a negative influence on the subsequent biotechnological processing and shelf life of the raw materials. Various approaches and their effects on renewable raw materials are shown. In addition, aspects of decentralized pretreatment steps are discussed. Another important aspect of pretreatment is the varying composition of the raw materials depending on the growth conditions. This problem can be solved with advanced on-site spectrometric analysis of the material.}, language = {en} }