@article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} } @article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Schleser, Markus and Schwarz, Alexander}, title = {Research on reducing residual stresses of SLM parts made for downstream welding process}, series = {Acta Technica Napocensis}, volume = {67}, journal = {Acta Technica Napocensis}, number = {1s}, publisher = {Technical University of Cluj-Napoca}, address = {Cluj-Napoca}, issn = {1221-5872}, pages = {69 -- 78}, year = {2024}, abstract = {In the face of the current trend towards larger and more complex production tasks in the SLM process and the current limitations in terms of maximum build space, the welding of SLM components to each other or to conventionally manufactured parts is becoming increasingly relevant. The fusion welding of SLM components made of 316L has so far been rarely investigated and if so, then for highly specialised laser welding processes. When welding with industrial gas welding processes such as MIG/MAG or TIG welding, distortions occur which are associated with the resulting residual stresses in the components. This paper investigates process-side influencing factors to avoid resulting residual stresses in SLM components made of 316L. The aim is to develop a strategy to build up SLM components as stress-free as possible in order to join them as profitably as possible with a downstream welding process. For this purpose, influencing parameters such as laser power, scan speed, but also scan vector length and different scan patterns are investigated with regard to their influence on residual stresses.}, language = {en} } @article{AbbasBalcBremenetal.2024, author = {Abbas, Karim and Balc, Nicolae and Bremen, Sebastian and Hedwig, Lukas}, title = {Polyetheretherketone (PEEK) in rapid tooling: advancements and applications for fused filament fabrication of rubber molds}, series = {Acta Technica Napocensis}, volume = {67}, journal = {Acta Technica Napocensis}, number = {1s}, publisher = {Technical University of Cluj-Napoca}, address = {Cluj-Napoca}, issn = {1221-5872}, pages = {13 -- 22}, year = {2024}, abstract = {Establishing high-performance polymers in additive manufacturing opens up new industrial applications. Polyetheretherketone (PEEK) was initially used in aerospace but is now widely applied in automotive, electronics, and medical industries. This study focuses on developing applications using PEEK and Fused Filament Fabrication for cost-efficient vulcanization injection mold production. A proof of concept confirms PEEK's suitability for AM mold making, withstanding vulcanization conditions. Printing PEEK above its glass transition temperature of 145 °C is preferable due to its narrow process window. A new process strategy at room temperature is discussed, with micrographs showing improved inter-layer bonding at 410°C nozzle temperature and 0.1 mm layer thickness. Minimizing the layer thickness from 0.15 mm to 0.1 mm improves tensile strength by 16\%.}, language = {en} } @article{LuftArntz2024, author = {Luft, Nils and Arntz, Kristian}, title = {The impact and challenges of Industry 4.0 on factory design, organization and management}, series = {Acta Technica Napocensis}, volume = {67}, journal = {Acta Technica Napocensis}, number = {1s}, publisher = {Technical University of Cluj-Napoca}, address = {Cluj-Napoca}, issn = {1221-5872}, pages = {151 -- 158}, year = {2024}, abstract = {The fourth industrial revolution is on its way to reshape manufacturing and value creation in a profound way. The underlying technologies like cyber-physical systems (CPS), big data, collaborative robotics, additive manufacturing or artificial intelligence offer huge potentials for the optimization and evolution of production systems. However, many manufacturing companies struggle to implement these technologies. This can only in part be attributed to the lack of skilled personal within these companies or a missing digitalization strategy. Rather, there is a fundamental incompatibility between the way current production systems and companies (Industry 3.0) are structured across multiple dimensions compared to what is necessary for industry 4.0. This is especially true in manufacturing systems and their transition towards flexible, decentralized and autonomous value creation networks. This paper shows across various dimensions these incompatibilities within manufacturing systems, explores their reasons and discusses a different approach to create a foundation for Industry 4.0 in manufacturing companies.}, language = {en} } @article{LuftBalcBremen2024, author = {Luft, Angela and Balc, Nicolae and Bremen, Sebastian}, title = {Experts' perspectives on the adoption of additive manufacturing in the industry and its interrelated implications in production structures}, series = {Acta Technica Napocensis}, volume = {67}, journal = {Acta Technica Napocensis}, number = {1s}, publisher = {Technical University of Cluj-Napoca}, address = {Cluj-Napoca}, issn = {1221-5872}, pages = {159 -- 168}, year = {2024}, abstract = {Additive Manufacturing (AM) is a topic that is becoming more relevant to many companies globally. With AM's progressive development and use for series production, integrating the technology into existing production structures is becoming an important criterion for businesses. This study qualitatively examines the actual state and different perspectives on the integration of AM in production structures. Seven semi-structured interviews were conducted and analyzed. The interview partners were high-level experts in Additive Manufacturing and production systems from industry and science. Four main themes were identified. Key findings are the far-reaching interrelationships and implications of AM within production structures. Specific AM-related aspects were identified. Those can be used to increase the knowledge and practical application of the technology in the industry and as a foundation for economic considerations.}, language = {en} } @article{LuftBremenLuft2023, author = {Luft, Angela and Bremen, Sebastian and Luft, Nils}, title = {A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning}, series = {Processes}, volume = {11}, journal = {Processes}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr11071968}, pages = {Artikel 1968}, year = {2023}, abstract = {There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly.}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{AbbasHedwigBalcetal.2023, author = {Abbas, Karim and Hedwig, Lukas and Balc, Nicolae and Bremen, Sebastian}, title = {Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling}, series = {Polymers}, volume = {2023}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym15214293}, pages = {Artikel 4293}, year = {2023}, abstract = {Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK's economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100\% solid and subjected to thermal post-treatment. This corresponds to a 20\% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15\% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70\% in tool production.}, language = {en} } @article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app13137610}, pages = {23 Seiten}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} } @article{PfaffBabilon2023, author = {Pfaff, Raphael and Babilon, Katharina}, title = {Railway Challenge - moderne Auflage der Rainhill Trials?}, series = {ETR - Eisenbahntechnische Rundschau}, volume = {2023}, journal = {ETR - Eisenbahntechnische Rundschau}, number = {4}, publisher = {DVV Media Group}, address = {Hamburg}, issn = {0013-2845}, pages = {55 -- 58}, year = {2023}, abstract = {Die IMechE Railway Challenge wird j{\"a}hrlich in Stapleford, Großbritannien ausgetragen. Im Rahmen der Challenge entwickeln und bauen Studierende eine Lokomotive und vergleichen sich in verschiedenen Disziplinen, darunter eine automatisierte Zielbremsung, optimale Energier{\"u}ckgewinnung beim Bremsen und minimale Ger{\"a}uschemissionen. Neben diesen und weiteren technischen Wettbewerbsdisziplinen treten die Fahrzeuge und die Teams auch in nicht-technischen Disziplinen wie einer Business Case Challenge an.}, language = {de} }