@inproceedings{StaatHeitzer1997, author = {Staat, Manfred and Heitzer, Michael}, title = {Direkte FEM-Berechnung der Tragf{\"a}higkeit hochbeanspruchter passiver Komponenten}, year = {1997}, abstract = {Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung l{\"a}ßt sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragf{\"a}higkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizit{\"a}tstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspiels{\"a}tze in ein allgemeines FEM Programm vorgestellt, mit der die Tragf{\"a}higkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die {\"u}bliche Strukturanalyse erl{\"a}utert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und Einspielanalysen. Die berechneten Interaktionsdiagramme geben einen guten {\"U}berblick {\"u}ber die m{\"o}glichen Betriebsbereiche passiver Komponenten. Die Traglastanalyse bietet auch einen strukturmechanischen Zugang zur Kollapslast rißbehafteter Komponenten aus hochz{\"a}hem Material.}, subject = {Finite-Elemente-Methode}, language = {de} } @inproceedings{StaatHeitzerHicken1998, author = {Staat, Manfred and Heitzer, M. and Hicken, E. F.}, title = {LISA, ein europ{\"a}isches Projekt zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen}, year = {1998}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizit{\"a}t, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik f{\"u}hrt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verz{\"o}gert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend ge{\"a}ndert. Die Autoren m{\"o}chten der Europ{\"a}ischen Kommission an dieser Stelle f{\"u}r die F{\"o}rderung ausdr{\"u}cklich danken. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegen{\"u}ber elastischen Analysen wesentlich zu erh{\"o}hen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen {\"U}berblick {\"u}ber m{\"o}gliche Betriebsbereiche vermitteln. Es zeigt sich, daß abh{\"a}ngig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden k{\"o}nnen. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle ben{\"o}tigt. Das Vorgehen ist {\"a}nhlich der Stabilit{\"a}tsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA geplante Zuverl{\"a}ssigkeitsanalyse ist erst auf der Basis direkter Verfahren effektiv m{\"o}glich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchf{\"u}hrbar.}, subject = {Finite-Elemente-Methode}, language = {de} } @inproceedings{LangWirtzHeitzeretal.1999, author = {Lang, H. and Wirtz, K. and Heitzer, Michael and Staat, Manfred and Oettel, R.}, title = {Zyklische Einspielversuche zur Verifikation von Shakedown-Analysen mittels FEM}, year = {1999}, abstract = {Im Rahmen von Erm{\"u}dungsanalysen ist nachzuweisen, daß die thermisch bedingten fortschreitenden Deformationen begrenzt bleiben. Hierzu ist die Abgrenzung des Shakedown-Bereiches (Einspielen) vom Ratchetting-Bereich (fortschreitende Deformation) von Interesse. Im Rahmen eines EU-gef{\"o}rderten Forschungsvorhabens wurden Experimente mit einem 4-Stab-Modell durchgef{\"u}hrt. Das Experiment bestand aus einem wassergek{\"u}hlten inneren Rohr und drei isolierten und beheizbaren {\"a}ußeren Probest{\"a}ben. Das System wurde durch alternierende Axialkr{\"a}fte, denen alternierende Temperaturen an den {\"a}ußeren St{\"a}ben {\"u}berlagert wurden, belastet. Die Versuchsparameter wurden teilweise nach vorausgegangenen Einspielanalysen gew{\"a}hlt. W{\"a}hrend der Versuchsdurchf{\"u}hrung wurden Temperaturen und Dehnungen zeitabh{\"a}ngig gemessen. Begleitend und nachfolgend zur Versuchsdurchf{\"u}hrung wurden die Belastungen und die daraus resultierenden Beanspruchungen nachvollzogen. Bei dieser inkrementellen elasto-plastischen Analyse mit dem Programm ANSYS wurden unterschiedliche Werkstoffmodelle angesetzt. Die Ergebnisse dieser Simulationsberechnung dienen dazu, die Shakedown-Analysen mittels FE-Methode zu verifizieren.}, subject = {Einspielen }, language = {de} } @inproceedings{StaatHeitzerHicken1999, author = {Staat, Manfred and Heitzer, Michael and Hicken, E. F.}, title = {LISA - ein europ{\"a}isches Projekt zur FEM-basierten Traglast- und Einspielanalyse}, year = {1999}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der Plastizit{\"a}t, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Anders als die klassische Behandlung nichtlinearer Probleme der Strukturmechanik f{\"u}hrt die Methode auf Optimierungsprobleme. Diese sind bei realistischen FEM-Modellen sehr groß. Das hat die industrielle Anwendung der Traglast- und Einspielanalysen stark verz{\"o}gert. Diese Situation wird durch das Brite-EuRam Projekt LISA grundlegend ge{\"a}ndert. In LISA entsteht auf der Basis des industriellen FEM-Programms PERMAS ein Verfahren zur direkten Berechnung der Tragf{\"a}higkeit duktiler Strukturen. Damit kann der Betriebsbereich von Komponenten und Bauwerken auf den plastischen Bereich erweitert werden, ohne den Aufwand gegen{\"u}ber elastischen Analysen wesentlich zu erh{\"o}hen. Die beachtlichen Rechenzeitgewinne erlauben Parameterstudien und die Berechnung von Interaktionsdiagrammen, die einen schnellen {\"U}berblick {\"u}ber m{\"o}gliche Betriebsbereiche vermitteln. Es zeigt sich, daß abh{\"a}ngig von der Komponente und ihren Belastungen teilweise entscheidende Sicherheitsgewinne zur Erweiterung der Betriebsbereiche erzielt werden k{\"o}nnen. Das Vorgehen erfordert vom Anwender oft ein gewisses Umdenken. Es werden keine Spannungen berechnet, um damit Sicherheit und Lebensdauer zu interpretieren. Statt dessen berechnet man direkt die gesuchte Sicherheit. Der Post-Prozessor wird nur noch zur Modell- und Rechenkontrolle ben{\"o}tigt. Das Vorgehen ist {\"a}hnlich der Stabilit{\"a}tsanalyse (Knicken, Beulen). Durch namhafte industrielle Projektpartner werden Validierung und die Anwendbarkeit auf eine breite Palette technischer Probleme garantiert. Die ebenfalls in LISA entwickelten Zuverl{\"a}ssigkeitsanalysen sind nichlinear erst auf der Basis direkter Verfahren effektiv m{\"o}glich. Ohne Traglast- und Einspielanalyse ist plastische Strukturoptimierung auch heute kaum durchf{\"u}hrbar. Auf die vorgesehenen Erweiterungen der Werkstoffmodellierung f{\"u}r nichtlineare Verfestigung und f{\"u}r Sch{\"a}digung konnte hier nicht eingegangen werden. Es herrscht ein deutlicher Mangel an Experimenten zum Nachweis der Grenzen zwischen elastischem Einspielen und dem Versagen durch LCF oder durch Ratchetting.}, subject = {Einspielen }, language = {de} } @inproceedings{DielmannSchieke2000, author = {Dielmann, Klaus-Peter and Schieke, Wolf}, title = {Mikrogasturbinen - Aufbau und Anwendungen}, year = {2000}, abstract = {Mikrogasturbinen: Funktion, Aufbau, Hersteller, Bauformen, Rekuperatorparameter, Besonderheit der Konstruktion, Regelung, Regelbarkeit, Vergleich mit anderen Systemen, Wirkungs- und Nutzungsgrade, Schadstoffemissionen, Nutzung in Kraft-W{\"a}rme-Kopplung, Kraft-W{\"a}rme-K{\"a}lte-Kopplung}, subject = {Gasturbine}, language = {de} } @inproceedings{StaatSzelinskiHeitzer2001, author = {Staat, Manfred and Szelinski, E. and Heitzer, Michael}, title = {Kollapsanalyse von l{\"a}ngsfehlerbehafteten Rohren und Beh{\"a}ltern}, year = {2001}, abstract = {Es werden verbesserte Kollapsanalysen von dickwandigen, mit axialen Oberfl{\"a}chenfehlern behafteten Rohren und Beh{\"a}ltern vorgeschlagen.}, subject = {Druckbeh{\"a}lter}, language = {de} } @inproceedings{StaatHeitzerReindersetal.2001, author = {Staat, Manfred and Heitzer, Michael and Reinders, H. and Schubert, F.}, title = {Einspielen und Ratchetting bei Zug- und Torsionsbelastung: Analyse und Experimente}, year = {2001}, abstract = {Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der klassischen Plastizit{\"a}tstheorie, die neben ausreichender Verformbarkeit keine einschr{\"a}nkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle f{\"u}r Details der Lastgeschichte und des Stoffverhaltens. Eine FEM-basierte Traglast- und Einspielanalyse f{\"u}r ideal plastisches Material wurde auf ein kinematisch verfestigendes Materialgesetz erweitert und in das Finite Element Programm PERMAS implementiert. In einem einfachen Zug-Torsionsexperiment wurde eine Hohlprobe mit konstanter Torsion und zyklischer Zugbelastung beansprucht, um die neue Implementierung zu verifizieren. Es konnte gezeigt werden, dass die Einspielanalyse gut mit den experimentellen Ergebnissen {\"u}bereinstimmt. Bei Verfestigung lassen sich wesentlich gr{\"o}ßere Sicherheiten nachweisen. Dieses Potential bedarf weiterer experimenteller Absicherung. Parallel dazu ist die Eisnpieltheorie auf fortschrittliche Verfestigungsans{\"a}tze zu erweitern.}, subject = {Zug-Druck-Beanspruchung}, language = {de} } @inproceedings{KernMeppelink2001, author = {Kern, Alexander and Meppelink, Jan}, title = {Neue M{\"o}glichkeiten elektrischer Anschl{\"u}sse an die Bewehrung und Untersuchung der Wirkung von Blitzstr{\"o}men in bewehrtem Beton}, year = {2001}, abstract = {Im Rahmen eines modernen Blitzschutzsystems f{\"u}r Stahlbeton-Bauten bietet es sich an, die Betonbewehrung zu benutzen: - Sie kann die Funktionen der Ableitungseinrichtungen und des Blitzschutz- Potentialausgleichs bei einem klassischen Geb{\"a}ude-Blitzschutz {\"u}bernehmen [1]; - Sie kann, ggf. bei entsprechender Erg{\"a}nzung, als ein geschlossener K{\"a}fig ausgebildet werden und damit eine deutliche Reduzierung der Belastung elektrischer / elektronischer Systeme durch blitzinduzierte elektromagnetische Felder erbringen (LEMP-Schutz [2]). Die Nutzung der Bewehrung ist dabei grunds{\"a}tzlich gleichermaßen bei Neubauten wie auch bei Ert{\"u}chtigungen m{\"o}glich und sinnvoll. So stellt die Nutzung der Bewehrung beispielsweise im Bereich von Großkraftwerken eine wesentliche Ert{\"u}chtigungsmaßnahme f{\"u}r den Blitzschutz elektrischer und elektronischer Einrichtungen dar: - Einerseits wird der Blitzschutz-Potentialausgleich durch den Anschluss metallener Einrichtungen wie Elektronik-Schr{\"a}nke, Kabeltrag-Konstruktionen, Rohrleitungen, etc. an die Bewehrung deutlich verbessert. - Andererseits kann bei gr{\"o}ßeren Geb{\"a}uden die elektromagnetische Schirmwirkung durch die elektrische {\"U}berbr{\"u}ckung von vorhandenen Dehnfugen bei Stahlbetonbauten optimiert werden. Diese Dehnfugen sind teilweise nur unzureichend {\"u}berbr{\"u}ckt, so dass bei Blitzeinschlag in das betreffende oder ein benachbartes Geb{\"a}ude an Kabelstrecken, die {\"u}ber die Dehnfuge hinwegf{\"u}hren, rel. hohe Spannungen induziert werden k{\"o}nnen [2, 3]. Die sich um das gesamte Geb{\"a}ude herumziehende oder zwischen zwei Geb{\"a}uden befindliche Dehnfuge muss deshalb im Abstand von maximal einigen Metern {\"u}berbr{\"u}ckt werden. Im Falle von Blitzschutz-Ert{\"u}chtigungen in vorhandenen Geb{\"a}uden wird bisher an jeder geplanten Anschlussstelle die Bewehrung großfl{\"a}chig (\&\#8709; wenige 10 cm) freigelegt, dort ein elektrischer Anschluss zu dem Bewehrungsstab hergestellt, z.B. mittels eines Erdungsfestpunkts, und dann die Betonoberfl{\"a}che wieder geschlossen. Je nach prognostizierter Strombelastung wird teilweise versucht, den {\"u}ber den Anschluss fließenden Strom bereits auf mehrere Bewehrungsst{\"a}be zu verteilen. Dazu sind entweder die kreuzenden St{\"a}be zu verschweißen oder es sind direkt Anschl{\"u}sse an zwei Bewehrungsst{\"a}be herzustellen. All dieses bedeutet einen hohen Aufwand bei der Freilegung der Bewehrung und auch wieder bei der Schließung der entstandenen Betonl{\"o}cher. Es soll deshalb hier untersucht werden, ob es beispielsweise zum Zwecke des Blitzschutz-Potentialausgleichs und auch zur {\"U}berbr{\"u}ckung von Dehnfugen ausreichend ist, den Anschluss an die Bewehrung nach einfachen Verfahren nur jeweils an einen Bewehrungsstab herzustellen. Damit w{\"u}rde der finanzielle und administrative Aufwand an Betonarbeiten deutlich reduziert. Die hier dargestellten Verfahren sind dabei insbesondere f{\"u}r den Einsatz bei Blitzschutz-Ert{\"u}chtigungen in bestehenden Geb{\"a}uden vorgesehen. Abschließend sollen deshalb die M{\"o}glichkeiten zur Pr{\"u}fung korrekter Anschl{\"u}sse, die Grenzen der Verfahren sowie auch die Grenzen der Anwendbarkeit bei Neuanlagen diskutiert werden.}, language = {de} } @inproceedings{KernNeskakisMueller2001, author = {Kern, Alexander and Neskakis, Apostolos and M{\"u}ller, Klaus-Peter}, title = {Blitzschutzkonzept f{\"u}r eine netz-autarke Hybridanlage am Beispiel der Anlage VATALI auf Kreta}, year = {2001}, abstract = {Netz-autarke Anlagen bestehen {\"u}blicherweise aus einer oder mehreren Photovoltaik- (PV-) Anlagen, ggf. auch Solarthermie- (ST-) Anlagen und einem oder mehreren kleineren Windgeneratoren (sie werden deshalb auch als Hybridanlagen bezeichnet) und werden vor allem in Gegenden mit sehr schlechter {\"o}ffentlicher Energieversorgung eingesetzt, d.h. insbesondere in rel. d{\"u}nn bewohnten Gebieten und in Entwicklungsl{\"a}ndern. Der Blitzschutz von netz-autarken Hybridanlagen ist ein bislang noch vergleichsweise unzureichend bearbeitetes Fachgebiet. F{\"u}r große Windenergie-Anlagen (WEA) wurde in den letzten Jahren eine Zahl von FuE-Projekten durchgef{\"u}hrt, zum Großteil finanziert durch die {\"o}ffentliche Hand, zum kleineren Teil auch durch die Industrie, d.h. die WEAHersteller. Dabei wurden bestehende Defizite im Design der WEA festgestellt und Maßnahmen vorgeschlagen, die vor den mechanischen Zerst{\"o}rungen insbesondere des Rotors und vor den St{\"o}rungen und Zerst{\"o}rungen an den elektrischen / elektronischen Systemen der WEA weitgehend Schutz bieten [1, 2, 3]. Der Stand-der- Normung ist im Entwurf DIN VDE 0127 Teil 24 „Blitzschutz f{\"u}r Windenergieanlagen" (dt. {\"U}bersetzung des internationalen Drafts IEC 61400-24 „Wind turbine generator systems; Part 24: Lightning Protection") dokumentiert [4]. Die Maßnahmen sind allerdings insbesondere f{\"u}r gr{\"o}ßere WEA vorgesehen; im Falle kleinerer WEA lassen sie sich nur bedingt umsetzen. Trotzdem sind auch kleinere WEA rel. stark blitzeinschlaggef{\"a}hrdet, wenn sie auf einer Bergkuppe o.{\"a}. platziert werden. F{\"u}r solche kleinere WEA, wie sie bei Hybridanlagen {\"u}blicherweise Verwendung finden, m{\"u}ssen die Blitzschutzmaßnahmen aus der DIN VDE 0127 Teil 24 angepasst werden. F{\"u}r PV- und ST-Anlagen ist eine entsprechende Blitzschutz-Norm noch nicht in Sicht. Hier ist vor allem der Schutz gegen direkte Blitzeinschl{\"a}ge in die Anlage bzw. die Geb{\"a}ude noch nicht ausreichend beachtet. Blitzfangeinrichtungen sind oft nicht vorgesehen. In aller Regel hat man dabei bisher eine Ausf{\"u}hrungsform des Blitzschutzes realisiert, die prim{\"a}r einen Ferneinschlag ber{\"u}cksichtigt und die dabei entstehenden induzierten, rel. energieschwachen {\"U}berspannungen durch schw{\"a}chere Schutzelemente wie R{\"u}ckstromdioden, Bypassdioden und zum Teil thermisch {\"u}berwachte Varistoren begrenzt [5, 6, 7]. Diese Schutzelemente k{\"o}nnen allerdings bei Naheinschl{\"a}gen bzw. Direkteinschl{\"a}gen {\"u}berlastet und damit zerst{\"o}rt werden. Dar{\"u}ber hinaus k{\"o}nnen Nahoder Direkteinschl{\"a}ge auch zur Schw{\"a}chung der elektrischen Festigkeit der PVModulisolierung f{\"u}hren. Die Folge davon sind lokale extreme W{\"a}rmeentwicklungen, die sogar ein Schmelzen von Glas (sekund{\"a}rer Langzeiteffekt) hervorrufen k{\"o}nnten. Bei einem Blitzeinschlag in die netz-autarke Hybridanlage VATALI auf Kreta im Jahre 2000 wurden sowohl einige mechanische wie auch elektrische Komponenten der Anlage zerst{\"o}rt bzw. zum Teil schwer besch{\"a}digt. Die Anlage VATALI besaß zum Zeitpunkt des Blitzeinschlags keinen wirksamen Blitzschutz. Der Gesamtschaden der Hardware belief sich auf ca. 60.000,- EURO. Die exponierte Stellung der Anlage auf einer Bergspitze stellte und stellt nach wie vor ein enormes Blitzeinschlag-Risiko dar, so dass auch zuk{\"u}nftig mit Blitzeinwirkungen gerechnet werden muss. Die Anlage wurde inspiziert, blitzschutz-technische Erfordernisse definiert und daraus Ert{\"u}chtigungsmaßnahmen abgeleitet, die mit {\"u}berschaubarem Aufwand realisierbar sind.}, language = {de} } @inproceedings{Kern2002, author = {Kern, Alexander}, title = {Risikomanagement : Absch{\"a}tzung des Schadensrisikos f{\"u}r bauliche Anlagen - Die neue Vornorm DIN V VDE V 0185 Teil 2 : 2002}, year = {2002}, abstract = {Alle Unternehmen sind vielf{\"a}ltigen Risiken ausgesetzt, die Finanz- und Betriebsbereiche einschließlich Dienstleistungen betreffen k{\"o}nnen. Die Firmen m{\"u}ssen {\"u}blicherweise Risiken eingehen, um im Wettbewerb bestehen zu k{\"o}nnen. Entscheidend ist, dass man sich {\"u}ber die Risiken bewusst ist, diese einsch{\"a}tzen und kontrollieren kann. Falsche Einsch{\"a}tzungen, Vers{\"a}umnisse und Fehlentscheidungen k{\"o}nnen empfindliche finanzielle Sch{\"a}den bis hin zum Totalverlust nach sich ziehen. Ein effektives Risikomanagement ist heute als wichtiger Sicherheitsfaktor anzusehen und sollte zur strategischen Unternehmensf{\"u}hrung geh{\"o}ren. Ein vorausschauendes Risikomanagement beinhaltet, Risiken f{\"u}r das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise {\"u}ber Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht geeignet sind (z.B. Erhaltung der Lieferf{\"a}higkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht ver{\"a}ndern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Ber{\"u}cksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verf{\"u}gbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem {\"u}bersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gef{\"a}hrdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschl{\"a}ge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Norm DIN V 0185-2 VDE V 0185 Teil 2 gefunden. Die hier vorgegebene Risikoanalyse gew{\"a}hrleistet, dass ein f{\"u}r alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei m{\"o}glichst geringem Aufwand den notwendigen Schutz gew{\"a}hrleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 detailliert beschrieben.}, language = {de} }