@article{MiyamatoSakakitaWagneretal.2015, author = {Miyamato, Ko-ichiro and Sakakita, Sakura and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.07.184}, pages = {137 -- 142}, year = {2015}, abstract = {The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion.}, language = {en} } @inproceedings{BreuerRaueMangetal.2015, author = {Breuer, Lars and Raue, Markus and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P5.8}, pages = {206 -- 209}, year = {2015}, language = {en} } @article{MiyamotoBingWagneretal.2015, author = {Miyamoto, Ko-ichiro and Bing, Yu and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.806}, pages = {936 -- 939}, year = {2015}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image.}, language = {en} } @article{DantismTakenagaWagneretal.2015, author = {Dantism, S. and Takenaga, S. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.647}, pages = {384 -- 387}, year = {2015}, abstract = {LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution.}, language = {en} } @article{TakenagaSchneiderErbayetal.2015, author = {Takenaga, Shoko and Schneider, Benno and Erbay, E. and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532053}, pages = {1347 -- 1352}, year = {2015}, abstract = {A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation.}, language = {en} } @article{BreuerRaueKirschbaumetal.2015, author = {Breuer, Lars and Raue, Markus and Kirschbaum, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431944}, pages = {1368 -- 1374}, year = {2015}, abstract = {Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed.}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2015, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.09.002}, pages = {926 -- 932}, year = {2015}, abstract = {The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed.}, language = {en} }