@article{GrajewskiHronTurek2006, author = {Grajewski, Matthias and Hron, Jaroslav and Turek, Stefan}, title = {Numerical analysis for a new non-conforming linear finite element on quadrilaterals}, series = {Journal of Computational and Applied Mathematics}, volume = {193}, journal = {Journal of Computational and Applied Mathematics}, number = {1}, issn = {0377-0427}, doi = {10.1016/j.cam.2005.05.024}, pages = {38 -- 50}, year = {2006}, language = {en} } @article{BialonskiWellmerElgeretal.2006, author = {Bialonski, Stephan and Wellmer, J{\"o}rg and Elger, Christian E. and Lehnertz, Klaus}, title = {Interictal focus localization in neocortical lesional epilepsies with synchronization cluster analysis}, series = {Epilepsia}, volume = {47}, journal = {Epilepsia}, issn = {0013-9580}, pages = {36}, year = {2006}, language = {en} } @article{BialonskiLehnertz2006, author = {Bialonski, Stephan and Lehnertz, Klaus}, title = {Identifying phase synchronization clusters in spatially extended dynamical systems}, series = {Physical Review E}, volume = {74}, journal = {Physical Review E}, number = {5}, issn = {2470-0053}, doi = {10.1103/PhysRevE.74.051909}, pages = {051909}, year = {2006}, language = {en} } @article{AlbrachtArampatzis2006, author = {Albracht, Kirsten and Arampatzis, Adamantios}, title = {Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy}, series = {Biological Cybernetics}, volume = {95}, journal = {Biological Cybernetics}, number = {1}, issn = {1432-0770}, doi = {10.1007/s00422-006-0070-z}, pages = {87 -- 96}, year = {2006}, language = {en} } @article{SchoeningAbouzarIngebrandtetal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Ingebrandt, Sven and Platen, Johannes and Offenh{\"a}usser, Andreas and Poghossian, Arshak}, title = {Towards label-free detection of charged macromolecules using field-effect-based structures : Scaling down from capacitive EIS sensor over ISFET to nano-scale devices}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {paper 0915-R05-04}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {89 -- 94}, year = {2006}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{KotliarDrozdovaShamshinova2006, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment.
 Part I. Ocular blood circulation and its quantitative estimation}, series = {National journal Glaucoma}, volume = {Vol. 5}, journal = {National journal Glaucoma}, number = {No. 3}, issn = {2078-4104}, pages = {62 -- 73}, year = {2006}, language = {ru} } @article{KotliarDrozdovaShamshinova2006, author = {Kotliar, Konstantin and Drozdova, G. A. and Shamshinova, A. M.}, title = {Ocular hemodinamics and contemporary methods of its assessment. Part II. Invasive methods of assessment of ocular blood flow}, series = {National Journal Glaucoma}, volume = {Vol. 5}, journal = {National Journal Glaucoma}, number = {No. 4}, issn = {2078-4104}, pages = {37 -- 49}, year = {2006}, language = {ru} } @article{SchoeningPoghossian2006, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {BioFEDs (field-effect devices) : State-of-the-art and new directions}, series = {Electroanalysis}, volume = {18}, journal = {Electroanalysis}, number = {19-20}, issn = {1521-4109}, doi = {10.1002/elan.200603609}, pages = {1893 -- 1900}, year = {2006}, language = {en} } @article{MossetDevroedeKriegueretal.2006, author = {Mosset, J.-B. and Devroede, O. and Krieguer, M. and Rey, M. and Vieira, J.-M. and Jung, J. H. and Kuntner, C. and Streun, M. and Ziemons, Karl and Auffray, E. and Sempere-Roldan, P. and Lecoq, P. and Bruyndonckx, P. and Loude, J.-F. and Tavernier, S. and Morcel, C.}, title = {Development of an optimized LSO/LuYAP phoswich detector head for the Lausanne ClearPET demonstrator}, series = {IEEE Transactions on Nuclear Science}, volume = {53}, journal = {IEEE Transactions on Nuclear Science}, number = {1}, isbn = {0018-9499}, pages = {25 -- 29}, year = {2006}, abstract = {This paper describes the LSO/LuYAP phoswich detector head developed for the ClearPET small animal PET scanner demonstrator that is under construction in Lausanne within the Crystal Clear Collaboration. The detector head consists of a dual layer of 8×8 LSO and LuYAP crystal arrays coupled to a multi-anode photomultiplier tube (Hamamatsu R7600-M64). Equalistion of the LSO/LuYAP light collection is obtained through partial attenuation of the LSO scintillation light using a thin aluminum deposit of 20-35 nm on LSO and appropriate temperature regulation of the phoswich head between 30°C to 60°C. At 511keV, typical FWHM energy resolutions of the pixels of a phoswich head amounts to (28±2)\% for LSO and (25±2)\% for LuYAP. The LSO versus LuYAP crystal identification efficiency is better than 98\%. Six detector modules have been mounted on a rotating gantry. Axial and tangential spatial resolutions were measured up to 4 cm from the scanner axis and compared to Monte Carlo simulations using GATE. FWHM spatial resolution ranges from 1.3 mm on axis to 2.6 mm at 4 cm from the axis.}, language = {en} }