@masterthesis{Latz2021, type = {Bachelor Thesis}, author = {Latz, Annika}, title = {Konzeptentwicklung einer spielerischen Lernanwendung f{\"u}r Studierende}, school = {Fachhochschule Aachen}, pages = {XIV, 136 Seiten}, year = {2021}, abstract = {Ziel der Arbeit war es eine spielerische Lernanwendung f{\"u}r Studierende der FH-Aachen zu entwickeln, um das individuelle Lernen zu f{\"o}rdern. Dabei lag der Fokus auf der Konzeptentwicklung eines Serious Games f{\"u}r die Fachhochschule Aachen. Abgeleitet von Motivationstheorien, Game Design Frameworks und Eigenschaften von digitalen spielerischen Konzepten wurde ein Vorgehensmodell zur Konzeptentwicklung eines Serious Games erstellt. Wichtige Punkte f{\"u}r die Anwendung waren eine intensive Austauschm{\"o}glichkeiten f{\"u}r Studierende und das Integrieren dieser in die Lehrveranstaltungen der FH-Aachen. In der abschließenden Evaluation wurde positives Feedback der Studierenden eingeholt und damit das Ziel der Arbeit erreicht. Zus{\"a}tzlich wurde f{\"u}r das erarbeitete Konzept die Wirtschaftlichkeit {\"u}berpr{\"u}ft. Daf{\"u}r wurde w{\"a}hrend der Bearbeitungszeit mit einem aufgestellten Team ein Business Plan f{\"u}r das F{\"o}rderprogramm Start-Up transfer.NRW entwickelt.}, language = {de} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @incollection{SchneiderWisselinkNoelleetal.2021, author = {Schneider, Dominik and Wisselink, Frank and N{\"o}lle, Nikolai and Czarnecki, Christian}, title = {Einfluss von K{\"u}nstlicher Intelligenz auf Customer Journeys am Beispiel von intelligentem Parken}, series = {K{\"u}nstliche Intelligenz in der Anwendung : Rechtliche Aspekte, Anwendungspotenziale und Einsatzszenarien}, booktitle = {K{\"u}nstliche Intelligenz in der Anwendung : Rechtliche Aspekte, Anwendungspotenziale und Einsatzszenarien}, editor = {Barton, Thomas and M{\"u}ller, Christian}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-30935-0 (Print)}, doi = {10.1007/978-3-658-30936-7_7}, pages = {99 -- 122}, year = {2021}, abstract = {Im Konsumentenmarkt entstehen vermehrt neue Anwendungen von K{\"u}nstlicher Intelligenz (KI). Zunehmend dr{\"a}ngen auch Ger{\"a}te und Dienste in den Markt, die eigenst{\"a}ndig {\"u}ber das Internet kommunizieren. Dadurch k{\"o}nnen diese Ger{\"a}te und Dienste mit neuartigen KI-basierten Diensten verbessert werden. Solche Dienste k{\"o}nnen die Art und Weise beeinflussen, wie Kunden kommerzielle Entscheidungen treffen und somit das Kundenerlebnis maßgeblich ver{\"a}ndern. Der Einfluss von KI auf kommerzielle Interaktionen wurde bisher noch nicht umfassend untersucht. Basierend auf einem Framework, welches einen ersten {\"U}berblick {\"u}ber die Effekte von KI auf kommerzielle Interaktionen gibt, wird in diesem Kapitel der Einfluss von KI auf Customer Journeys am konkreten Anwendungsfall des intelligenten Parkens analysiert. Die daraus gewonnenen Erkenntnisse k{\"o}nnen in der Praxis als Grundlage genutzt werden, um das Potenzial von KI zu verstehen und bei der Gestaltung eigener Customer Journeys umzusetzen.}, language = {de} } @incollection{CroonCzarnecki2021, author = {Croon, Philipp and Czarnecki, Christian}, title = {Liability for loss or damages caused by RPA}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {9783110676778}, doi = {10.1515/9783110676693-202}, pages = {135 -- 151}, year = {2021}, abstract = {Intelligent autonomous software robots replacing human activities and performing administrative processes are reality in today's corporate world. This includes, for example, decisions about invoice payments, identification of customers for a marketing campaign, and answering customer complaints. What happens if such a software robot causes a damage? Due to the complete absence of human activities, the question is not trivial. It could even happen that no one is liable for a damage towards a third party, which could create an uncalculatable legal risk for business partners. Furthermore, the implementation and operation of those software robots involves various stakeholders, which result in the unsolvable endeavor of identifying the originator of a damage. Overall it is advisable to all involved parties to carefully consider the legal situation. This chapter discusses the liability of software robots from an interdisciplinary perspective. Based on different technical scenarios the legal aspects of liability are discussed.}, language = {en} } @incollection{BensbergAuthCzarnecki2021, author = {Bensberg, Frank and Auth, Gunnar and Czarnecki, Christian}, title = {Finding the perfect RPA match : a criteria-based selection method for RPA solutions}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {978-3-11-067677-8}, doi = {10.1515/9783110676693-201}, pages = {47 -- 75}, year = {2021}, abstract = {The benefits of robotic process automation (RPA) are highly related to the usage of commercial off-the-shelf (COTS) software products that can be easily implemented and customized by business units. But, how to find the best fitting RPA product for a specific situation that creates the expected benefits? This question is related to the general area of software evaluation and selection. In the face of more than 75 RPA products currently on the market, guidance considering those specifics is required. Therefore, this chapter proposes a criteria-based selection method specifically for RPA. The method includes a quantitative evaluation of costs and benefits as well as a qualitative utility analysis based on functional criteria. By using the visualization of financial implications (VOFI) method, an application-oriented structure is provided that opposes the total cost of ownership to the time savings times salary (TSTS). For the utility analysis a detailed list of functional criteria for RPA is offered. The whole method is based on a multi-vocal review of scientific and non-scholarly literature including publications by business practitioners, consultants, and vendors. The application of the method is illustrated by a concrete RPA example. The illustrated structures, templates, and criteria can be directly utilized by practitioners in their real-life RPA implementations. In addition, a normative decision process for selecting RPA alternatives is proposed before the chapter closes with a discussion and outlook.}, language = {en} } @incollection{CzarneckiFettke2021, author = {Czarnecki, Christian and Fettke, Peter}, title = {Robotic process automation : Positioning, structuring, and framing the work}, series = {Robotic process automation : Management, technology, applications}, booktitle = {Robotic process automation : Management, technology, applications}, editor = {Czarnecki, Christian and Fettke, Peter}, publisher = {De Gruyter}, address = {Oldenbourg}, isbn = {978-3-11-067668-6 (Print)}, doi = {10.1515/9783110676693-202}, pages = {3 -- 24}, year = {2021}, abstract = {Robotic process automation (RPA) has attracted increasing attention in research and practice. This chapter positions, structures, and frames the topic as an introduction to this book. RPA is understood as a broad concept that comprises a variety of concrete solutions. From a management perspective RPA offers an innovative approach for realizing automation potentials, whereas from a technical perspective the implementation based on software products and the impact of artificial intelligence (AI) and machine learning (ML) are relevant. RPA is industry-independent and can be used, for example, in finance, telecommunications, and the public sector. With respect to RPA this chapter discusses definitions, related approaches, a structuring framework, a research framework, and an inside as well as outside architectural view. Furthermore, it provides an overview of the book combined with short summaries of each chapter.}, language = {en} } @incollection{CzarneckiHongSchmitzetal.2021, author = {Czarnecki, Christian and Hong, Chin-Gi and Schmitz, Manfred and Dietze, Christian}, title = {Enabling digital transformation through cognitive robotic process automation at Deutsche Telekom Services Europe}, series = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, booktitle = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, editor = {Urbach, Nils and R{\"o}glinger, Maximilian and Kautz, Karlheinz and Alias, Rose Alinda and Saunders, Carol and Wiener, Martin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-80002-4 (Print)}, doi = {10.1007/978-3-030-80003-1}, pages = {123 -- 138}, year = {2021}, abstract = {Subject of this case is Deutsche Telekom Services Europe (DTSE), a service center for administrative processes. Due to the high volume of repetitive tasks (e.g., 100k manual uploads of offer documents into SAP per year), automation was identified as an important strategic target with a high management attention and commitment. DTSE has to work with various backend application systems without any possibility to change those systems. Furthermore, the complexity of administrative processes differed. When it comes to the transfer of unstructured data (e.g., offer documents) to structured data (e.g., MS Excel files), further cognitive technologies were needed.}, language = {en} } @inproceedings{RitschelStenzelCzarneckietal.2021, author = {Ritschel, Konstantin and Stenzel, Adina and Czarnecki, Christian and Hong, Chin-Gi}, title = {Realizing robotic process automation potentials: an architectural perspective on a real-life implementation case}, series = {GI Edition Proceedings Band 314 "INFORMATIK 2021" Computer Science \& Sustainability}, booktitle = {GI Edition Proceedings Band 314 "INFORMATIK 2021" Computer Science \& Sustainability}, editor = {Gesellschaft f{\"u}r Informatik e.V. (GI),}, publisher = {K{\"o}llen}, address = {Bonn}, isbn = {9783885797081}, issn = {1617-5468}, pages = {1303 -- 1311}, year = {2021}, abstract = {The initial idea of Robotic Process Automation (RPA) is the automation of business processes through a simple emulation of user input and output by software robots. Hence, it can be assumed that no changes of the used software systems and existing Enterprise Architecture (EA) is required. In this short, practical paper we discuss this assumption based on a real-life implementation project. We show that a successful RPA implementation might require architectural work during analysis, implementation, and migration. As practical paper we focus on exemplary lessons-learned and new questions related to RPA and EA.}, language = {en} } @inproceedings{NikolovskiRekeElsenetal.2021, author = {Nikolovski, Gjorgji and Reke, Michael and Elsen, Ingo and Schiffer, Stefan}, title = {Machine learning based 3D object detection for navigation in unstructured environments}, series = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, booktitle = {2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)}, publisher = {IEEE}, isbn = {978-1-6654-7921-9}, doi = {10.1109/IVWorkshops54471.2021.9669218}, pages = {236 -- 242}, year = {2021}, abstract = {In this paper we investigate the use of deep neural networks for 3D object detection in uncommon, unstructured environments such as in an open-pit mine. While neural nets are frequently used for object detection in regular autonomous driving applications, more unusual driving scenarios aside street traffic pose additional challenges. For one, the collection of appropriate data sets to train the networks is an issue. For another, testing the performance of trained networks often requires tailored integration with the particular domain as well. While there exist different solutions for these problems in regular autonomous driving, there are only very few approaches that work for special domains just as well. We address both the challenges above in this work. First, we discuss two possible ways of acquiring data for training and evaluation. That is, we evaluate a semi-automated annotation of recorded LIDAR data and we examine synthetic data generation. Using these datasets we train and test different deep neural network for the task of object detection. Second, we propose a possible integration of a ROS2 detector module for an autonomous driving platform. Finally, we present the performance of three state-of-the-art deep neural networks in the domain of 3D object detection on a synthetic dataset and a smaller one containing a characteristic object from an open-pit mine.}, language = {en} } @incollection{LeiseAltherr2021, author = {Leise, Philipp and Altherr, Lena}, title = {Experimental evaluation of resilience metrics in a fluid system}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {442 -- 447}, year = {2021}, language = {en} } @incollection{AltherrLeisePfetschetal.2021, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Optimal design of resilient technical systems on the example of water supply systems}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {429 -- 433}, year = {2021}, language = {en} } @incollection{AltherrLeise2021, author = {Altherr, Lena and Leise, Philipp}, title = {Resilience as a concept for mastering uncertainty}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9}, pages = {412 -- 417}, year = {2021}, language = {en} } @article{LeiseEsserEichenlaubetal.2021, author = {Leise, Philipp and Eßer, Arved and Eichenlaub, Tobias and Schleiffer, Jean-Eric and Altherr, Lena and Rinderknecht, Stephan and Pelz, Peter F.}, title = {Sustainable system design of electric powertrains - comparison of optimization methods}, series = {Engineering Optimization}, journal = {Engineering Optimization}, publisher = {Taylor \& Francis}, address = {London}, issn = {0305-215X}, doi = {10.1080/0305215X.2021.1928660}, year = {2021}, abstract = {The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal 'climate action' stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed.}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1405 -- 1409}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @inproceedings{MuellerSchmittLeiseetal.2021, author = {M{\"u}ller, Tim M. and Schmitt, Andreas and Leise, Philipp and Meck, Tobias and Altherr, Lena and Pelz, Peter F. and Pfetsch, Marc E.}, title = {Validation of an optimized resilient water supply system}, series = {Uncertainty in Mechanical Engineering}, booktitle = {Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-77255-0}, doi = {10.1007/978-3-030-77256-7_7}, pages = {70 -- 80}, year = {2021}, abstract = {Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems.}, language = {en} } @incollection{PfetschAbeleAltherretal.2021, author = {Pfetsch, Marc E. and Abele, Eberhard and Altherr, Lena and B{\"o}lling, Christian and Br{\"o}tz, Nicolas and Dietrich, Ingo and Gally, Tristan and Geßner, Felix and Groche, Peter and Hoppe, Florian and Kirchner, Eckhard and Kloberdanz, Hermann and Knoll, Maximilian and Kolvenbach, Philip and Kuttich-Meinlschmidt, Anja and Leise, Philipp and Lorenz, Ulf and Matei, Alexander and Molitor, Dirk A. and Niessen, Pia and Pelz, Peter F. and Rexer, Manuel and Schmitt, Andreas and Schmitt, Johann M. and Schulte, Fiona and Ulbrich, Stefan and Weigold, Matthias}, title = {Strategies for mastering uncertainty}, series = {Mastering uncertainty in mechanical engineering}, booktitle = {Mastering uncertainty in mechanical engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9_6}, pages = {365 -- 456}, year = {2021}, abstract = {This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.}, language = {en} } @inproceedings{ChajanSchulteTiggesRekeetal.2021, author = {Chajan, Eduard and Schulte-Tigges, Joschua and Reke, Michael and Ferrein, Alexander and Matheis, Dominik and Walter, Thomas}, title = {GPU based model-predictive path control for self-driving vehicles}, series = {IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {978-1-7281-5394-0}, doi = {10.1109/IV48863.2021.9575619}, pages = {1243 -- 1248}, year = {2021}, abstract = {One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments.}, language = {en} } @inproceedings{HueningWacheMagiera2021, author = {H{\"u}ning, Felix and Wache, Franz-Josef and Magiera, David}, title = {Redundant bus systems using dual-mode radio}, series = {Proceedings of Sixth International Congress on Information and Communication Technology}, booktitle = {Proceedings of Sixth International Congress on Information and Communication Technology}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-16-2379-0}, doi = {10.1007/978-981-16-2380-6_73}, pages = {835 -- 842}, year = {2021}, abstract = {Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, language = {en} } @inproceedings{HoegenDonckerBragardetal.2021, author = {Hoegen, Anne von and Doncker, Rik W. De and Bragard, Michael and Hoegen, Svenja von}, title = {Problem-Based Learning in Automation Engineering: Performing a Remote Laboratory Session Serving Various Educational Attainments}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9453925}, pages = {1605 -- 1614}, year = {2021}, language = {en} }