@article{KirchnerLiSpelthahnetal.2009, author = {Kirchner, Patrick and Li, B. and Spelthahn, H. and Henkel, H. and Schneider, A. and Kolstad, J. and Friedrich, P. and Sch{\"o}ning, Michael Josef}, title = {Realisierung eines miniaturisierten Gassensors in Chiptechnologie basierend auf einer D{\"u}nnschicht-Thermos{\"a}ule zur H2O2-Detektion in aseptischen Abf{\"u}llanlagen}, series = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, journal = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-941298-44-6}, pages = {293 -- 296}, year = {2009}, language = {de} } @article{KirchnerOberlaenderFriedrichetal.2012, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef and Keusgen, Michael}, title = {Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.01.032}, pages = {60 -- 66}, year = {2012}, abstract = {A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(\%, v/v) in a H2O2 concentration range of 0\%, v/v to 8\%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes.}, language = {en} } @article{KirchnerOberlaenderFriedrichetal.2011, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Suso, Henri-Pierre and Kupyna, Andriy and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimisation and fabrication of a calorimetric gas sensor built up on a polyimide substrate for H2O2 monitoring}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1235 -- 1240}, year = {2011}, language = {en} } @article{KirchnerOberlaenderSucoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suco, Henri-Pierre and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef}, title = {Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor}, series = {Food control}, volume = {31}, journal = {Food control}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-7135}, doi = {10.1016/j.foodcont.2012.11.048}, pages = {530 -- 538}, year = {2013}, abstract = {In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8\% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(\% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2.}, language = {en} } @inproceedings{OberlaenderReisertKirchneretal.2013, author = {Oberl{\"a}nder, Jan and Reisert, Steffen and Kirchner, Patrick and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Kalorimetrische Gassensoren zur H2O2-Detektion in aseptischen Sterilisationsprozessen}, series = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, booktitle = {11. Dresdner Sensor-Symposium : 9.-11.12.2013}, organization = {Dresdner Sensor-Symposium <11, 2013>}, isbn = {978-3-9813484-5-3}, pages = {234 -- 238}, year = {2013}, language = {de} } @article{SchoeningKirchnerNgetal.2010, author = {Sch{\"o}ning, Michael Josef and Kirchner, Patrick and Ng, Yue Ann and Spelthahn, Heiko and Schneider, Andreas and Henkel, Hartmut and Friedrich, Peter and Kolstad, Jens and Berger, J{\"o}rg and Keusgen, Michael}, title = {Gas sensor investigation based on a catalytically activated thin-film thermopile for H2O2 detection}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {787 -- 792}, year = {2010}, language = {en} } @inproceedings{OberlaenderKirchnerKeusgenetal.2014, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Flexible polyimide-based calorimetric gas sensors for monitoring hy-drogen peroxide in sterilisation processes of aseptic filling machines}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 4}, year = {2014}, language = {en} } @article{JildehKirchnerOberlaenderetal.2017, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Kremers, Alexander and Wagner, Torsten and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring}, series = {physica status solidi a : applications and materials sciences}, journal = {physica status solidi a : applications and materials sciences}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201600912}, year = {2017}, abstract = {A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed.}, language = {en} } @inproceedings{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P3.11}, pages = {163 -- 168}, year = {2015}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} }