@article{MuribYeapMartensetal.2015, author = {Murib, M. S. and Yeap, W. S. and Martens, D. and Liu, X. and Bienstman, P. and Fahlman, M. and Sch{\"o}ning, Michael Josef and Michiels, L. and Haenen, K. and Serpeng{\"u}zel, A. and Wagner, Patrick}, title = {Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands}, series = {Sensors and actuators A: Physical}, volume = {222}, journal = {Sensors and actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3069 (E-Journal); 0924-4247 (Print)}, doi = {10.1016/j.sna.2014.11.024}, pages = {212 -- 219}, year = {2015}, abstract = {In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor.}, language = {en} } @article{PilasMarianoKeusgenetal.2015, author = {Pilas, Johanna and Mariano, K. and Keusgen, M. and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.702}, pages = {532 -- 535}, year = {2015}, language = {en} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @article{HuckPoghossianBaeckeretal.2015, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Kramer, Friederike and Begoyan, Vardges K. and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing using high-k oxide of barium strontium titanate}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431911}, pages = {1259}, year = {2015}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed.}, language = {en} } @article{SchusserKrischerBaeckeretal.2015, author = {Schusser, Sebastian and Krischer, Maximillian and B{\"a}cker, Matthias and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {87}, journal = {Analytical Chemistry}, number = {13}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-6882}, doi = {10.1021/acs.analchem.5b00617}, pages = {6607 -- 6613}, year = {2015}, abstract = {Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.}, language = {en} } @inproceedings{BreuerRaueMangetal.2015, author = {Breuer, Lars and Raue, Markus and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P5.8}, pages = {206 -- 209}, year = {2015}, language = {en} } @article{BreuerRaueKirschbaumetal.2015, author = {Breuer, Lars and Raue, Markus and Kirschbaum, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431944}, pages = {1368 -- 1374}, year = {2015}, abstract = {Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed.}, language = {en} } @article{DantismTakenagaWagneretal.2015, author = {Dantism, S. and Takenaga, S. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.647}, pages = {384 -- 387}, year = {2015}, abstract = {LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution.}, language = {en} } @inproceedings{PoghossianBronderWuetal.2015, author = {Poghossian, Arshak and Bronder, Thomas and Wu, Chunsheng and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices}, series = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, booktitle = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, isbn = {978-5-8084-1991-9}, pages = {61 -- 63}, year = {2015}, language = {en} } @article{WuBronderPoghossianetal.2015, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Werner, Frederik and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {7}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C4NR07225A}, pages = {6143 -- 6150}, year = {2015}, abstract = {A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.}, language = {en} }