@article{HoffstadtCheenakulaNikolauszetal.2023, author = {Hoffstadt, Kevin and Cheenakula, Dheeraja and Nikolausz, Marcell and Krafft, Simone and Harms, Hauke and Kuperjans, Isabel}, title = {Design and construction of a new reactor for flexible biomethanation of hydrogen}, series = {Fermentation}, volume = {9}, journal = {Fermentation}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2311-5637}, doi = {10.3390/fermentation9080774}, pages = {1 -- 16}, year = {2023}, abstract = {The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29\%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h-1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested.}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} } @article{RuppRiekeHandschuhetal.2020, author = {Rupp, Matthias and Rieke, Christian and Handschuh, Nils and Kuperjans, Isabel}, title = {Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities}, series = {Transportation Research Part D: Transport and Environment}, volume = {81}, journal = {Transportation Research Part D: Transport and Environment}, number = {Article 102293}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1361-9209}, doi = {10.1016/j.trd.2020.102293}, year = {2020}, abstract = {In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles' charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6\% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9\%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5\% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.}, language = {en} } @article{DielmannCudinaMehlkopf2003, author = {Dielmann, Klaus-Peter and Cudina, Boris and Mehlkopf, Marcus}, title = {Einfluss der Brennstoffdaten auf die CO2-Inventarisierung : Handel mit Emissionsrechten}, series = {Euroheat and power : Kraft-W{\"a}rme-Kopplung, Nah-/Fernw{\"a}rme, Contracting}, volume = {32}, journal = {Euroheat and power : Kraft-W{\"a}rme-Kopplung, Nah-/Fernw{\"a}rme, Contracting}, number = {9}, isbn = {0949-166X}, pages = {22 -- 25}, year = {2003}, language = {de} } @article{KuperjansWeitzel2015, author = {Kuperjans, Isabel and Weitzel, J.}, title = {Energiedesign 2020 : Sichere Strom- und W{\"a}rmeversorgung f{\"u}r die Industrie}, series = {TAB: das Fachmedium der TGA-Branche}, journal = {TAB: das Fachmedium der TGA-Branche}, number = {3}, publisher = {Bauverlag}, address = {G{\"u}tersloh}, issn = {0341-2032}, pages = {105 -- 107}, year = {2015}, language = {de} } @article{DielmannMehlkopfCudina2004, author = {Dielmann, Klaus-Peter and Mehlkopf, Marcus and Cudina, Boris}, title = {Erfahrungen mit der Software Risa-Gen}, series = {BWK : das Energie-Fachmagazin}, volume = {56}, journal = {BWK : das Energie-Fachmagazin}, number = {3}, isbn = {0006-9612}, issn = {1618-193X}, pages = {24 -- 25}, year = {2004}, language = {de} } @article{Kuperjans1996, author = {Kuperjans, Isabel}, title = {Exergetische und exergo{\"o}konomische Analyse thermischer Prozesse}, series = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, journal = {Arbeitsbericht / Institut f{\"u}r Wirtschaftswissenschaften, Rheinisch-Westf{\"a}lische Technische Hochschule Aachen}, number = {06}, year = {1996}, language = {de} } @article{PauksztatKuperjansMeyer2005, author = {Pauksztat, Anja and Kuperjans, Isabel and Meyer, J{\"o}rg}, title = {Formeln statt Zahlen : Referenzwerte Formeln zur energetischen Bewertung von Produktionsanlagen}, series = {BWK : das Energie-Fachmagazin}, volume = {57}, journal = {BWK : das Energie-Fachmagazin}, number = {12}, issn = {0006-9612}, pages = {52 -- 55}, year = {2005}, language = {de} } @article{KuperjansEsserMeyeretal.2000, author = {Kuperjans, Isabel and Esser, J. and Meyer, J{\"o}rg and Donner, O.}, title = {Gestaltung und Bewertung von Energieanlagen unter {\"o}kologischen, wirtschaftlichen und technischen Gesichtspunkten}, series = {Umweltwirtschaftsforum : UWF}, volume = {8}, journal = {Umweltwirtschaftsforum : UWF}, number = {3}, issn = {0943-3481}, pages = {53 -- 58}, year = {2000}, language = {de} } @article{Kuperjans2011, author = {Kuperjans, Isabel}, title = {Gute Planung ist alles : Energieeffizienz in der Pharmaproduktion}, series = {Pharma + Food}, volume = {2011}, journal = {Pharma + Food}, number = {2}, publisher = {H{\"u}thig}, address = {Heidelberg}, issn = {1434-8942}, pages = {8 -- 10}, year = {2011}, language = {de} }