@article{KaulenSchwabedalSchneideretal.2022, author = {Kaulen, Lars and Schwabedal, Justus T. C. and Schneider, Jules and Ritter, Philipp and Bialonski, Stephan}, title = {Advanced sleep spindle identification with neural networks}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {Article number: 7686}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-11210-y}, pages = {1 -- 10}, year = {2022}, abstract = {Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model's performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and Staeudle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katya N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity}, series = {npj Microgravity}, volume = {7}, journal = {npj Microgravity}, number = {Article number: 32}, publisher = {Springer Nature}, address = {New York}, issn = {2373-8065}, doi = {10.1038/s41526-021-00155-7}, pages = {7 Seiten}, year = {2021}, abstract = {Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70\% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.}, language = {en} } @article{JablonskiPoghossianKeusgenetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Detection of plant virus particles with a capacitive field-effect sensor}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, address = {Cham}, issn = {1618-2650}, doi = {10.1007/s00216-021-03448-8}, pages = {5669 -- 5678}, year = {2021}, abstract = {Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.}, language = {en} } @article{WeldenNagamineKomesuWagneretal.2021, author = {Welden, Rene and Nagamine Komesu, Cindy A. and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment}, series = {Electrochemical Science Advances}, volume = {2}, journal = {Electrochemical Science Advances}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2698-5977}, doi = {10.1002/elsa.202100131}, pages = {1 -- 5}, year = {2021}, abstract = {Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin.}, language = {en} } @article{OliveiraMolinnusBegingetal.2021, author = {Oliveira, Danilo A. and Molinnus, Denise and Beging, Stefan and Siqueira Jr, Jos{\´e} R. and Sch{\"o}ning, Michael Josef}, title = {Biosensor Based on Self-Assembled Films of Graphene Oxide and Polyaniline Using a Field-Effect Device Platform}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000747}, pages = {1 -- 9}, year = {2021}, abstract = {A new functionalization method to modify capacitive electrolyte-insulator-semiconductor (EIS) structures with nanofilms is presented. Layers of polyallylamine hydrochloride (PAH) and graphene oxide (GO) with the compound polyaniline:poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI:PAAMPSA) are deposited onto a p-Si/SiO2 chip using the layer-by-layer technique (LbL). Two different enzymes (urease and penicillinase) are separately immobilized on top of a five-bilayer stack of the PAH:GO/PANI:PAAMPSA-modified EIS chip, forming a biosensor for detection of urea and penicillin, respectively. Electrochemical characterization is performed by constant capacitance (ConCap) measurements, and the film morphology is characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). An increase in the average sensitivity of the modified biosensors (EIS-nanofilm-enzyme) of around 15\% is found in relation to sensors, only carrying the enzyme but without the nanofilm (EIS-enzyme). In this sense, the nanofilm acts as a stable bioreceptor onto the EIS chip improving the output signal in terms of sensitivity and stability.}, language = {en} } @article{MolinnusIkenJohnenetal.2022, author = {Molinnus, Denise and Iken, Heiko and Johnen, Anna Lynn and Richstein, Benjamin and Hellmich, Lena and Poghossian, Arshak and Knoch, Joachim and Sch{\"o}ning, Michael Josef}, title = {Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta₂O₅ Films Prepared by Atomic Layer Deposition}, series = {physica status solidi (a) applications and materials science}, volume = {219}, journal = {physica status solidi (a) applications and materials science}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202100660}, pages = {7 Seiten}, year = {2022}, abstract = {Miniaturized electrolyte-insulator-semiconductor capacitors (EISCAPs) with ultrathin gate insulators have been studied in terms of their pH-sensitive sensor characteristics: three different EISCAP systems consisting of Al-p-Si-Ta2O5(5 nm), Al-p-Si-Si3N4(1 or 2 nm)-Ta2O5 (5 nm), and Al-p-Si-SiO2(3.6 nm)-Ta2O5(5 nm) layer structures are characterized in buffer solution with different pH values by means of capacitance-voltage and constant capacitance method. The SiO2 and Si3N4 gate insulators are deposited by rapid thermal oxidation and rapid thermal nitridation, respectively, whereas the Ta2O5 film is prepared by atomic layer deposition. All EISCAP systems have a clear pH response, favoring the stacked gate insulators SiO2-Ta2O5 when considering the overall sensor characteristics, while the Si3N4(1 nm)-Ta2O5 stack delivers the largest accumulation capacitance (due to the lower equivalent oxide thickness) and a higher steepness in the slope of the capacitance-voltage curve among the studied stacked gate insulator systems.}, language = {en} } @incollection{AkimbekovDigelSherelkhanetal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Razzaque, Mohammed S.}, title = {Vitamin D and Phosphate Interactions in Health and Disease}, series = {Phosphate Metabolism}, booktitle = {Phosphate Metabolism}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-91621-3}, doi = {10.1007/978-3-030-91623-7_5}, pages = {37 -- 46}, year = {2022}, abstract = {Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30-40\% and phosphate to nearly 80\%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.}, language = {en} } @article{BhattaraiHorbachStaatetal.2022, author = {Bhattarai, Aroj and Horbach, Andreas and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Virgin passive colon biomechanics and a literature review of active contraction constitutive models}, series = {Biomechanics}, volume = {2}, journal = {Biomechanics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2673-7078}, doi = {10.3390/biomechanics2020013}, pages = {138 -- 157}, year = {2022}, abstract = {The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel-Gasser-Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill's three-element model, Murphy's four-state cross-bridge chemical kinetic model and Huxley's sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} }