@article{DachwaldMcDonaldMcInnesetal.2007, author = {Dachwald, Bernd and McDonald, Malcolm and McInnes, Colin R. and Mengali, Giovanni}, title = {Impact of Optical Degradation on Solar Sail Mission Performance}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {740 -- 749}, year = {2007}, language = {en} } @article{DachwaldMengaliQuartaetal.2006, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandrao A. and Macdonald, Malcolm}, title = {Parametric Model and Optimal Control of Solar Sails with Optical Degradation}, series = {Journal of guidance, control, and dynamics. 29 (2006), H. 5}, journal = {Journal of guidance, control, and dynamics. 29 (2006), H. 5}, isbn = {0162-3192}, pages = {1170 -- 1178}, year = {2006}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} } @article{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A. and Circi, Christian}, title = {Refined Solar Sail Force Model with Mission Application / Giovanni Mengali ; Alessandro A. Quarta , Christian Circi ; Bernd Dachwald}, series = {Journal of Guidance, Control, and Dynamics. 30 (2007), H. 2}, journal = {Journal of Guidance, Control, and Dynamics. 30 (2007), H. 2}, isbn = {0162-3192}, pages = {512 -- 520}, year = {2007}, language = {en} } @inproceedings{DachwaldMikuckiTulaczyketal.2012, author = {Dachwald, Bernd and Mikucki, Jill A. and Tulaczyk, Slawek and Digel, Ilya and Feldmann, Marco and Espe, Clemens and Plescher, Engelbert and Xu, Changsheng}, title = {IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems}, year = {2012}, abstract = {The "IceMole" is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences' Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe's potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology.}, subject = {Eisschicht}, language = {en} } @article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @article{DachwaldOhndorf2007, author = {Dachwald, Bernd and Ohndorf, A.}, title = {1st ACT Global Trajectory Optimisation Competition : Results found at DLR}, series = {Acta Astronautica. 61 (2007), H. 9}, journal = {Acta Astronautica. 61 (2007), H. 9}, isbn = {0094-5765}, pages = {742 -- 752}, year = {2007}, language = {en} } @article{DachwaldOhndorfGill2009, author = {Dachwald, Bernd and Ohndorf, A. and Gill, E.}, title = {Optimization of low-thrust Earth-Moon transfers using evolutionary neurocontrol / Ohndorf, A. ; Dachwald, B. ; Gill, E.}, series = {IEEE Congress on Evolutionary Computation, 2009. CEC '09.}, journal = {IEEE Congress on Evolutionary Computation, 2009. CEC '09.}, isbn = {978-1-4244-2958-5}, pages = {358 -- 364}, year = {2009}, language = {en} } @article{DachwaldOhndorfWie2006, author = {Dachwald, Bernd and Ohndorf, A. and Wie, Bong}, title = {Solar Sail Trajectory Optimization for the Solar Polar Imager (SPI) Mission}, series = {AIAA Guidance, Navigation, and Control Conference \& Exhibit - AIAA Atmospheric Flight Mechanics Conference \& Exhibit - AIAA Modeling and Simulation Technologies Conference \& Exhibit - AIAA/AAS Astrodynamics Specialist Conference \& Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 )}, journal = {AIAA Guidance, Navigation, and Control Conference \& Exhibit - AIAA Atmospheric Flight Mechanics Conference \& Exhibit - AIAA Modeling and Simulation Technologies Conference \& Exhibit - AIAA/AAS Astrodynamics Specialist Conference \& Exhibit : [21 - 24 August 2006, Keystone, Colorado ; papers]. - (AIAA meeting papers on disc ; [11.]2006,19-20 )}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-802-1}, pages = {2 CD-ROMs.}, year = {2006}, language = {en} } @incollection{DachwaldOhndorf2019, author = {Dachwald, Bernd and Ohndorf, Andreas}, title = {Global optimization of continuous-thrust trajectories using evolutionary neurocontrol}, series = {Modeling and Optimization in Space Engineering}, booktitle = {Modeling and Optimization in Space Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-10501-3}, doi = {10.1007/978-3-030-10501-3_2}, pages = {33 -- 57}, year = {2019}, abstract = {Searching optimal continuous-thrust trajectories is usually a difficult and time-consuming task. The solution quality of traditional optimal-control methods depends strongly on an adequate initial guess because the solution is typically close to the initial guess, which may be far from the (unknown) global optimum. Evolutionary neurocontrol attacks continuous-thrust optimization problems from the perspective of artificial intelligence and machine learning, combining artificial neural networks and evolutionary algorithms. This chapter describes the method and shows some example results for single- and multi-phase continuous-thrust trajectory optimization problems to assess its performance. Evolutionary neurocontrol can explore the trajectory search space more exhaustively than a human expert can do with traditional optimal-control methods. Especially for difficult problems, it usually finds solutions that are closer to the global optimum. Another fundamental advantage is that continuous-thrust trajectories can be optimized without an initial guess and without expert supervision.}, language = {en} } @article{DachwaldSchmidtSeboldtetal.2003, author = {Dachwald, Bernd and Schmidt, Tanja D. and Seboldt, Wolfgang and Auweter-Kurtz,}, title = {Flight Opportunities from Mars to Earth for Piloted Missions Using Continuous Thrust Propulsion / Schmidt, Tanja D. ; Dachwald, Bernd ; Seboldt, Wolfgang ; Auweter-Kurtz, Monika}, publisher = {-}, pages = {1 -- 9}, year = {2003}, language = {en} } @article{DachwaldSeboldt2005, author = {Dachwald, Bernd and Seboldt, W.}, title = {Multiple Near-Earth Asteroid Rendezvous and Sample Return Using First Generation Solar Sailcraft}, series = {Acta Astronautica. 57 (2005), H. 11}, journal = {Acta Astronautica. 57 (2005), H. 11}, isbn = {0094-5765}, pages = {864 -- 875}, year = {2005}, language = {en} } @article{DachwaldSeboldt2002, author = {Dachwald, Bernd and Seboldt, W.}, title = {Optimization of Interplanetary Rendezvous Trajectories for Solar Sailcraft Using a Neurocontroller}, series = {A collection of technical papers / AIAA Astrodynamics Specialist Conference : Monterey, California, 5 - 8 August 2002. - Vol. 2}, journal = {A collection of technical papers / AIAA Astrodynamics Specialist Conference : Monterey, California, 5 - 8 August 2002. - Vol. 2}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-549-9}, pages = {1263 -- 1270}, year = {2002}, language = {en} } @article{DachwaldSeboldt2005, author = {Dachwald, Bernd and Seboldt, W.}, title = {Solar Sails for Near- and Medium-Term Scientific Deep Space Missions / W. Sebolt ; B. Dachwald}, series = {In-space propulsion : edited book of proceedings of the 10-IWCP, the 10th International Workshop on Combustion and Propulsion held in Lerici, La Spezia, Italy, 21-25 September 2003 / [ed.: Luigi T. DeLuca]}, journal = {In-space propulsion : edited book of proceedings of the 10-IWCP, the 10th International Workshop on Combustion and Propulsion held in Lerici, La Spezia, Italy, 21-25 September 2003 / [ed.: Luigi T. DeLuca]}, publisher = {SP Lab, Politecnico di Milano}, address = {Milano}, pages = {getr. Z{\"a}hlung . Ill.}, year = {2005}, language = {en} } @article{DachwaldSeboldt2008, author = {Dachwald, Bernd and Seboldt, W.}, title = {Solar Sails — Propellantless Propulsion for Near- and Medium-Term Deep-Space Missions / W. Seboldt ; B. Dachwald}, series = {Advanced Propulsion Systems and Technologies, Today to 2020 / Claudio Bruno (ed.) ... - (Progress in Astronautics and Aeronautics Series ; 223)}, journal = {Advanced Propulsion Systems and Technologies, Today to 2020 / Claudio Bruno (ed.) ... - (Progress in Astronautics and Aeronautics Series ; 223)}, publisher = {AIAA}, address = {Reston, Va.}, isbn = {978-1-56347-929-8}, pages = {460 S.}, year = {2008}, language = {en} } @article{DachwaldSeboldtLoebetal.2008, author = {Dachwald, Bernd and Seboldt, W. and Loeb, H. W and Schartner, K.-H.}, title = {Main Belt Asteroid Sample Return Mission Using Solar Electric Propulsion}, series = {Acta Astronautica. 63 (2008), H. 1-4}, journal = {Acta Astronautica. 63 (2008), H. 1-4}, isbn = {0094-5765}, pages = {91 -- 101}, year = {2008}, language = {en} } @article{DachwaldSeboldtLaemmerzahl2008, author = {Dachwald, Bernd and Seboldt, W. and L{\"a}mmerzahl, W.}, title = {Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions}, series = {Lasers, Clocks and Drag Free Control : Exploration of Relativistic Gravity in Space / by Hansj{\"o}rg Dittus ..., eds. - ( Astrophysics and Space Science Library ; 349)}, journal = {Lasers, Clocks and Drag Free Control : Exploration of Relativistic Gravity in Space / by Hansj{\"o}rg Dittus ..., eds. - ( Astrophysics and Space Science Library ; 349)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-34376-9}, pages = {379 -- 398}, year = {2008}, language = {en} } @article{DachwaldSeboldtRichter2006, author = {Dachwald, Bernd and Seboldt, W. and Richter, L.}, title = {Multiple rendezvous and sample return missions to near-Earth objects using solar sailcraft / Dachwald, B. ; Seboldt, W. ; Richter, L.}, series = {Acta Astronautica. 59 (2006), H. 8-11}, journal = {Acta Astronautica. 59 (2006), H. 8-11}, isbn = {0094-5765}, pages = {768 -- 776}, year = {2006}, language = {en} } @article{DachwaldSeboldtRichter2003, author = {Dachwald, Bernd and Seboldt, W. and Richter, L.}, title = {Multiple Rendezvous and Sample Return Missions to Near-Earth Asteroids Using Solar Sailcraft}, series = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, journal = {Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris]}, publisher = {ESA}, address = {Noordwijk}, isbn = {92-9092-853-0}, pages = {351 -- 358}, year = {2003}, language = {en} } @article{DachwaldSeboldt2003, author = {Dachwald, Bernd and Seboldt, Wolfgang}, title = {Solar sailcraft of the first generation technology development / Seboldt, Wolfgang ; Dachwald, Bernd}, year = {2003}, language = {en} } @article{DachwaldSeboldt2003, author = {Dachwald, Bernd and Seboldt, Wolfgang}, title = {Solar sailcraft of the first generation mission applications to near-earth asteroids}, year = {2003}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{DachwaldSeboldtLoebetal.2007, author = {Dachwald, Bernd and Seboldt, Wolfgang and Loeb, Horst W. and Schartner, Karl-Heinz}, title = {A comparison of SEP and NEP for a main belt asteroid sample return mission}, series = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, booktitle = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, pages = {1 -- 10}, year = {2007}, abstract = {Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on "Advanced Interplanetary Missions Using Nuclear-Electric Propulsion" (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results.}, language = {en} } @article{DachwaldSeboldtMacdonaldetal.2005, author = {Dachwald, Bernd and Seboldt, Wolfgang and Macdonald, Malcolm and Mengali, Giovanni and Quatra, Alessandro A. and McInnes, Colin R. and Rios-Reyes, Leonel and Scheerers, Daniel J. and Wie, Bong and G{\"o}rlich, Marianne and Lura, Franz and Diedrich, Benjamin and Baturkin, Volodymyr and Coverstone, Victoria L. and Leipold, Manfred and Garbe, Gregory P.}, title = {Potential Solar Sail Degradation Effects on Trajectory and Attitude Control}, series = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, journal = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-765-3}, pages = {2 CD-ROMs}, year = {2005}, language = {en} } @article{DachwaldTuryshevDittusetal.2005, author = {Dachwald, Bernd and Turyshev, Slava G. and Dittus, H. and Shao, M. [u.a.]}, title = {Fundamental Physics with the Laser Astrometric Test Of Relativity / S.G. Turyshev ; H. Dittus ; M. Shao ... B.Dachwald ...}, series = {Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588)}, journal = {Proceedings of the 39th ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020" : 19 - 21 April 2005, ESTEC, Noordwijk, the Netherlands / European Space Agency. [Comp. by: F. Favata ...] . - (ESA SP ; 588)}, publisher = {ESA Publ. Div.}, address = {Noordwijk}, isbn = {9290928999}, pages = {8 -- 11}, year = {2005}, language = {en} } @incollection{DachwaldUlamecBiele2013, author = {Dachwald, Bernd and Ulamec, Stephan and Biele, Jens}, title = {Clean in situ subsurface exploration of icy environments in the solar system}, series = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, booktitle = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-6545-0 (Druckausgabe)}, pages = {367 -- 397}, year = {2013}, abstract = {"To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested."}, language = {en} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{DachwaldUlamecPostbergetal.2020, author = {Dachwald, Bernd and Ulamec, Stephan and Postberg, Frank and Sohl, Frank and Vera, Jean-Pierre de and Christoph, Waldmann and Lorenz, Ralph D. and Hellard, Hugo and Biele, Jens and Rettberg, Petra}, title = {Key technologies and instrumentation for subsurface exploration of ocean worlds}, series = {Space Science Reviews}, volume = {216}, journal = {Space Science Reviews}, number = {Art. 83}, publisher = {Springer}, address = {Dordrecht}, issn = {1572-9672}, doi = {10.1007/s11214-020-00707-5}, pages = {45}, year = {2020}, abstract = {In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter's moon Europa and Saturn's moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or - in the case of Enceladus - plume-fly-through missions.}, language = {en} } @article{DachwaldWi2007, author = {Dachwald, Bernd and Wi, Bong}, title = {Solar Sail Kinetic Energy Impactor Trajectory Optimization for an Asteroid-Deflection Mission}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {755 -- 764}, year = {2007}, language = {en} } @article{DachwaldWie2005, author = {Dachwald, Bernd and Wie, Bong}, title = {Solar Sail Trajectory Optimization for Intercepting, Impacting, and Deflecting Near-Earth Asteroids}, series = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, journal = {AIAA Guidance, Navigation and Control Conference and Exhibit - AIAA Modeling and Simulation Technologies Conference and Exhibit - AIAA Atmospheric Flight Mechanics Conference and Exhibit : [San Francisco, California, 15 - 18 August 2005 ; papers]. - (AIAA meeting papers on disc ; [10.]2005,16-17)}, publisher = {American Institute of Aeronautics and Astronautics}, address = {Reston, Va.}, isbn = {1-56347-765-3}, pages = {2 CD-ROMs}, year = {2005}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Design concept and modeling of an advanced solar photon thruster}, series = {Advances in the Astronautical Sciences}, booktitle = {Advances in the Astronautical Sciences}, publisher = {American Astronautical Society}, address = {San Diego, Calif.}, isbn = {978-087703554-1}, issn = {00653438}, pages = {723 -- 740}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {Vol. 8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @article{DachwaldWurm2011, author = {Dachwald, Bernd and Wurm, Patrick}, title = {Mission analysis and performance comparison for an Advanced Solar Photon Thruster}, series = {Advances in Space Research}, volume = {48}, journal = {Advances in Space Research}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, pages = {1858 -- 1868}, year = {2011}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert}, title = {IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier}, series = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011 Vienna | Austria | 03 - 08 April 2011}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert and Digel, Ilya and Artmann, Gerhard}, title = {Development and testing of a subsurface probe for detection of life in deep ice : [abstract]}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, subject = {Eisschicht}, language = {en} } @article{DashevskyLanzlKotliar2011, author = {Dashevsky, Alexey V. and Lanzl, Ines M. and Kotliar, Konstantin}, title = {Non-penetrating intracanalicular partial trabeculectomy via the ostia of Schlemm's canal}, series = {Graefe's Archive for Clinical and Experimental Ophthalmology}, volume = {249}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {0721-832x}, pages = {565 -- 573}, year = {2011}, language = {en} } @inproceedings{deHondePorstDigel2017, author = {de Honde, Lukas and Porst, Dariusz and Digel, Ilya}, title = {A randomized, observational thermographic study of the neck region before and after a physiotherapeutic intervention}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Fischerauer, Alice}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {122 -- 123}, year = {2017}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{DemirciTrzewikLinderetal.2004, author = {Demirci, T. and Trzewik, J. and Linder, Peter and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: Real Time PCR Products and Suppliers by Comparison}, series = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1046 -- 1047}, year = {2004}, language = {en} } @article{DemirciTrzewikLinderetal.2004, author = {Demirci, T. and Trzewik, J. and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: ITGB5 and p53 Responses as Quantified on the mRNA Level}, series = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {1030 -- 1031}, year = {2004}, language = {en} } @article{DemirciKurulganDemirciTrzewiketal.2009, author = {Demirci, Taylan and Kurulgan Demirci, Eylem and Trzewik, J{\"u}rgen and Linder, Peter and Digel, Ilya and Artmann, Gerhard and Sakizli, Meral and Temiz Artmann, Ayseg{\"u}l}, title = {Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1521-6543}, pages = {311 -- 312}, year = {2009}, language = {en} } @article{Digel2011, author = {Digel, Ilya}, title = {Primary thermosensory events in cells}, series = {Transient receptor potential channels / Md. Shahidul Islam, ed.}, journal = {Transient receptor potential channels / Md. Shahidul Islam, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-94-007-0264-6}, pages = {451 -- 468}, year = {2011}, language = {en} } @article{Digel2008, author = {Digel, Ilya}, title = {Controlling microbial adhesion : a surface engineering approach}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-75408-4}, pages = {601 -- 625}, year = {2008}, language = {en} } @article{Digel2010, author = {Digel, Ilya}, title = {In-situ biological decontamination of an ice melting probe}, year = {2010}, language = {en} } @article{DigelAkimbekovTuralievaetal.2013, author = {Digel, Ilya and Akimbekov, N. and Turalieva, M. and Mansurov, Z. and Temiz Artmann, Ayseg{\"u}l and Eshibaev, A. and Zhubanova, A.}, title = {Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions}, series = {Journal of Industrial Technology and Engineering}, volume = {2}, journal = {Journal of Industrial Technology and Engineering}, number = {07}, pages = {47 -- 54}, year = {2013}, language = {en} } @article{DigelAkimbekovRogachevetal.2023, author = {Digel, Ilya and Akimbekov, Nuraly and Rogachev, Evgeniy and Pogorelova, Natalia}, title = {Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties}, series = {Cellulose}, journal = {Cellulose}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1572-882X (Online)}, doi = {10.1007/s10570-023-05592-z}, pages = {15 Seiten}, year = {2023}, abstract = {In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4\% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L-1 after a 18-20 days incubation period. Glucose in general lead to a higher BC yield (173 g L-1) compared to sucrose (163.5 g L-1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates.}, language = {en} } @incollection{DigelAkimbekovKistaubayevaetal.2018, author = {Digel, Ilya and Akimbekov, Nuraly Sh. and Kistaubayeva, Aida and Zhubanova, Azhar A.}, title = {Microbial Sampling from Dry Surfaces: Current Challenges and Solutions}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_19}, pages = {421 -- 456}, year = {2018}, abstract = {Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms' recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling.}, language = {en} } @inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @article{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, pages = {1 -- 24}, year = {2009}, language = {en} } @article{DigelDemirciTemizArtmannetal.2004, author = {Digel, Ilya and Demirci, Taylan and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K.}, title = {Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs)}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {982 -- 983}, year = {2004}, language = {en} }