@techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @inproceedings{KapoorBollerGiljohannetal.2010, author = {Kapoor, Hrshi and Boller, Christian and Giljohann, Sebastian and Braun, Carsten}, title = {Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations}, series = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, booktitle = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, publisher = {Dt. Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, address = {Berlin}, organization = {Deutsche Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, isbn = {978-3-940283-28-3}, pages = {9}, year = {2010}, language = {en} } @misc{Kowalski2010, type = {Master Thesis}, author = {Kowalski, Julia}, title = {Streamline estimation from sparsely sampled q-space Magnetic Resonance data}, year = {2010}, language = {de} } @article{Esch2010, author = {Esch, Thomas}, title = {Trends in commercial vehicle powertrains}, series = {ATZautotechnology}, volume = {2010}, journal = {ATZautotechnology}, number = {10}, publisher = {Vieweg \& Sohn}, address = {Wiesbaden}, issn = {2192-886X}, doi = {10.1007/BF03247185}, pages = {26 -- 31}, year = {2010}, abstract = {Low emission zones and truck bans, the rising price of diesel and increases in road tolls: all of these factors are putting serious pressure on the transport industry. Commercial vehicle manufacturers and their suppliers are in the process of identifying new solutions to these challenges as part of their efforts to meet the EEV (enhanced environmentally friendly vehicle) limits, which are currently the most robust European exhaust and emissions standards for trucks and buses.}, language = {en} } @article{Esch2010, author = {Esch, Thomas}, title = {Trends in der Nutzfahrzeugantriebstechnik}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {71}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {10}, publisher = {Springer Nature}, address = {Basel}, isbn = {0024-8525}, doi = {10.1007/bf03225608}, pages = {652 -- 658}, year = {2010}, language = {de} } @book{LemaitreBlome2010, author = {Lemaitre, George and Blome, Hans-Joachim}, title = {Von der klassischen Kosmologie zum Quantenkosmos}, editor = {Blome, Hans-Joachim}, publisher = {Deutsch}, address = {Frankfurt am Main}, isbn = {978-3-8171-3304-8}, pages = {240 S.}, year = {2010}, language = {de} }