@article{Alt1978, author = {Alt, Helmut}, title = {Tabellenfreie Berechnung der Einkommensteuer mit Hilfe des programmierbaren Taschenrechners}, series = {Elektrizit{\"a}tswirtschaft}, volume = {77}, journal = {Elektrizit{\"a}tswirtschaft}, publisher = {VWEW-Energieverlag}, address = {Frankfurt/Main}, issn = {0013-5496}, pages = {486 -- 489}, year = {1978}, language = {de} } @book{SchubaLinnhoffPopienReichletal.1996, author = {Schuba, Marko and Linnhoff-Popien, Claudia and Reichl, Peter and Schuba, Marko}, title = {Systemprogrammierung : Skript zur Vorlesung an der RWTH Aachen / Otto Spaniol ...}, publisher = {Verl. der Augustinus-Buchh.}, address = {Aachen}, isbn = {3-86073-470-9}, pages = {VIII, 166 S. : graph. Darst.}, year = {1996}, language = {de} } @article{ElsenKraiss1999, author = {Elsen, Ingo and Kraiss, Karl-Friedrich}, title = {System concept and realization of a scalable neurocomputing architecture}, series = {Systems Analysis Modelling Simulation}, volume = {35}, journal = {Systems Analysis Modelling Simulation}, number = {4}, publisher = {Gordon and Breach Science Publishers}, address = {Amsterdam}, issn = {0232-9298}, pages = {399 -- 419}, year = {1999}, abstract = {This paper describes the realization of a novel neurocomputer which is based on the concepts of a coprocessor. In contrast to existing neurocomputers the main interest was the realization of a scalable, flexible system, which is capable of computing neural networks of arbitrary topology and scale, with full independence of special hardware from the software's point of view. On the other hand, computational power should be added, whenever needed and flexibly adapted to the requirements of the application. Hardware independence is achieved by a run time system which is capable of using all available computing power, including multiple host CPUs and an arbitrary number of neural coprocessors autonomously. The realization of arbitrary neural topologies is provided through the implementation of the elementary operations which can be found in most neural topologies.}, language = {en} } @article{DroopChenRadfordetal.2023, author = {Droop, Philipp and Chen, Shaohuang and Radford, Melissa J. and Paulßen, Elisabeth and Gates, Byron D. and Reilly, Raymond M. and Radchenko, Valery and Hoehr, Cornelia}, title = {Synthesis of 197m/gHg labelled gold nanoparticles for targeted radionuclide therapy}, series = {Radiochimica Acta}, volume = {111}, journal = {Radiochimica Acta}, number = {10}, publisher = {De Gruyter}, address = {Berlin [u.a.]}, issn = {2193-3405}, doi = {10.1515/ract-2023-0144}, pages = {773 -- 779}, year = {2023}, abstract = {Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment).}, language = {en} } @inproceedings{BuxbaumSchwarteRingbeck2000, author = {Buxbaum, Bernd and Schwarte, Rudolf and Ringbeck, Thorsten}, title = {Synchronization in spread spectrum laser radar systems based on PMD-DLL}, series = {Laser radar technology and applications V : 26 - 28 April 2000, Orlando, USA. - (SPIE proceedings series ; 4035)}, booktitle = {Laser radar technology and applications V : 26 - 28 April 2000, Orlando, USA. - (SPIE proceedings series ; 4035)}, editor = {Kamerman, Gary W.}, publisher = {SPIE}, address = {Bellingham, Wash.}, isbn = {0-8194-3661-5}, issn = {0038-7355}, pages = {204 -- 216}, year = {2000}, language = {en} } @article{LeiseEsserEichenlaubetal.2021, author = {Leise, Philipp and Eßer, Arved and Eichenlaub, Tobias and Schleiffer, Jean-Eric and Altherr, Lena and Rinderknecht, Stephan and Pelz, Peter F.}, title = {Sustainable system design of electric powertrains - comparison of optimization methods}, series = {Engineering Optimization}, journal = {Engineering Optimization}, publisher = {Taylor \& Francis}, address = {London}, issn = {0305-215X}, doi = {10.1080/0305215X.2021.1928660}, year = {2021}, abstract = {The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal 'climate action' stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed.}, language = {en} } @inproceedings{Huening2021, author = {H{\"u}ning, Felix}, title = {Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students}, series = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, booktitle = {Blended Learning in Engineering Education: challenging, enlightening - and lasting?}, isbn = {978-2-87352-023-6}, pages = {1424 -- 1428}, year = {2021}, abstract = {The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher's observations of the student's learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching.}, language = {en} } @article{Heuermann1996, author = {Heuermann, Holger}, title = {Sure Methods of On-Wafer Scattering Parameter Measurements with Self-Calibration Procedures}, pages = {136 -- 145}, year = {1996}, language = {en} } @book{Samm1989, author = {Samm, Doris}, title = {Suche nach skalaren und pseudoskalaren Teilchen am Kernreaktor Merlin der KFA J{\"u}lich}, pages = {109 S. : graph. Darst.}, year = {1989}, language = {de} } @article{SammFaissnerGoettlicheretal.1988, author = {Samm, Doris and Faissner, H. and G{\"o}ttlicher, P. and Matela, H.}, title = {Suche nach skalaren und pseudoskalaren Teilchen am Kernreaktor Merlin der KFA Juelich / Faissner, H.; Goettlicher, P.; Matela, H.; Samm, D.}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft. 23 (1988), H. 5}, journal = {Verhandlungen der Deutschen Physikalischen Gesellschaft. 23 (1988), H. 5}, year = {1988}, language = {de} } @article{HartungGirodHorn1995, author = {Hartung, Frank and Girod, Bernd and Horn, Uwe}, title = {Subband Image Coding / Girod, Bernd ; Hartung, Frank ; Horn, Uwe}, series = {Subband and Wavelet Transforms: Design and Applications / ed. by Ali N. Akansu}, journal = {Subband and Wavelet Transforms: Design and Applications / ed. by Ali N. Akansu}, publisher = {Kluwer}, address = {Boston}, isbn = {0792396456}, pages = {213 -- 250}, year = {1995}, language = {en} } @article{Hagemann1989, author = {Hagemann, Hans-J{\"u}rgen}, title = {St{\"o}rstellengleichgewichte in eisendotierten Titanaten. Hagemann, H. J.}, series = {Philips - Unsere Forschung in Deutschland / Hrsg.: Philips Forschungslaboratorium GmbH Aachen und Hamburg. 4 (1989)}, journal = {Philips - Unsere Forschung in Deutschland / Hrsg.: Philips Forschungslaboratorium GmbH Aachen und Hamburg. 4 (1989)}, pages = {170 -- 172}, year = {1989}, language = {de} } @article{HueningSpartaRedhammeretal.2001, author = {H{\"u}ning, Felix and Sparta, K. and Redhammer, G. J. and Roussel, P.}, title = {Structural Phase Transition in the 2D Spin Dimer Compound SrCu2(BO3)2 / Sparta, K. ; Redhammer, G. J. ; Roussel, P. ; Heger, G. ; Roth, G. ; Ionescu, A. Lemmens, P. ; Grove, M. ; G{\"u}ntherrodt, G. ; H{\"u}ning, F. ; Lueken, H. ; Kageyama, H. ; Onizuka, K ; Ueda}, series = {The European Physical Journal B - Condensed Matter and Complex Systems. 19 (2001), H. 4}, journal = {The European Physical Journal B - Condensed Matter and Complex Systems. 19 (2001), H. 4}, publisher = {-}, isbn = {1434-6036}, pages = {507 -- 516}, year = {2001}, language = {en} } @inproceedings{BroennerHoefkenSchuba2016, author = {Broenner, Simon and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Streamlining extraction and analysis of android RAM images}, series = {Proceedings of the 2nd international conference on information systems security and privacy}, booktitle = {Proceedings of the 2nd international conference on information systems security and privacy}, organization = {ICISSP International Conference on Information Systems Security and Privacy <2, 2016, Rome, Italy>}, isbn = {978-989-758-167-0}, doi = {10.5220/0005652802550264}, pages = {255 -- 264}, year = {2016}, language = {en} } @article{ElsenHartungHornetal.2001, author = {Elsen, Ingo and Hartung, Frank and Horn, Uwe and Kampmann, Markus and Peters, Liliane}, title = {Streaming technology in 3G mobile communication systems}, series = {Computer : innovative technology for computer professionals}, volume = {34}, journal = {Computer : innovative technology for computer professionals}, number = {9 Seiten}, editor = {Voas, Jeffrey}, publisher = {IEEE}, address = {New York}, issn = {0018-9162}, pages = {46 -- 52}, year = {2001}, abstract = {Third-generation mobile communication systems will combine standardized streaming with a range of unique services to provide high-quality Internet content that meets the specific needs of the rapidly growing mobile market.}, language = {en} } @techreport{BarnatArntzBerneckeretal.2024, type = {Working Paper}, author = {Barnat, Miriam and Arntz, Kristian and Bernecker, Andreas and Fissabre, Anke and Franken, Norbert and Goldbach, Daniel and H{\"u}ning, Felix and J{\"o}rissen, J{\"o}rg and Kirsch, Ansgar and Pettrak, J{\"u}rgen and Rexforth, Matthias and Josef, Rosenkranz and Terstegge, Andreas}, title = {Strategische Gestaltung von Studieng{\"a}ngen f{\"u}r die Zukunft: Ein kollaborativ entwickeltes Self-Assessment}, series = {Hochschulforum Digitalisierung - Diskussionspapier}, journal = {Hochschulforum Digitalisierung - Diskussionspapier}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, pages = {16 Seiten}, year = {2024}, abstract = {Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools f{\"u}r Studieng{\"a}nge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studieng{\"a}ngen zu st{\"a}rken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studieng{\"a}nge dient.}, language = {de} } @incollection{PfetschAbeleAltherretal.2021, author = {Pfetsch, Marc E. and Abele, Eberhard and Altherr, Lena and B{\"o}lling, Christian and Br{\"o}tz, Nicolas and Dietrich, Ingo and Gally, Tristan and Geßner, Felix and Groche, Peter and Hoppe, Florian and Kirchner, Eckhard and Kloberdanz, Hermann and Knoll, Maximilian and Kolvenbach, Philip and Kuttich-Meinlschmidt, Anja and Leise, Philipp and Lorenz, Ulf and Matei, Alexander and Molitor, Dirk A. and Niessen, Pia and Pelz, Peter F. and Rexer, Manuel and Schmitt, Andreas and Schmitt, Johann M. and Schulte, Fiona and Ulbrich, Stefan and Weigold, Matthias}, title = {Strategies for mastering uncertainty}, series = {Mastering uncertainty in mechanical engineering}, booktitle = {Mastering uncertainty in mechanical engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78353-2}, doi = {10.1007/978-3-030-78354-9_6}, pages = {365 -- 456}, year = {2021}, abstract = {This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.}, language = {en} } @inproceedings{Gligorevic2013, author = {Gligorevic, Snjezana}, title = {Stochastic modeling of non-stationary channels}, series = {7th European Conference on Antennas and Propagation (EuCAP) : 8 - 12 April 2013, Gothenburg, Sweden}, booktitle = {7th European Conference on Antennas and Propagation (EuCAP) : 8 - 12 April 2013, Gothenburg, Sweden}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {European Association on Antennas and Propagation}, isbn = {978-1-4673-2187-7 ; 978-88-907018-1-8}, pages = {1677 -- 1681}, year = {2013}, language = {en} } @article{Alt1986, author = {Alt, Helmut}, title = {Steuersenkungsgesetz-Auswirkungen und Berechnung}, series = {Elektrizit{\"a}tswirtschaft}, volume = {Jg. 85}, journal = {Elektrizit{\"a}tswirtschaft}, issn = {0013-5496}, pages = {238 -- 242}, year = {1986}, language = {de} } @article{Alt1987, author = {Alt, Helmut}, title = {Steuersenkungs-Erweiterungsgesetz 1988 zur Gesamtentlastung der Einkommensteuer}, series = {Betriebs-Berater : BB ; Zeitschrift f{\"u}r Recht und Wirtschaft}, volume = {Vol. 42}, journal = {Betriebs-Berater : BB ; Zeitschrift f{\"u}r Recht und Wirtschaft}, number = {H. 32}, issn = {0340-7918}, pages = {2207 -- 2208}, year = {1987}, language = {de} }