@misc{FrauenrathDieringerPateletal.2011, author = {Frauenrath, Tobias and Dieringer, Matthias and Patel, Nishant and Zerdem, Celal and Hentschel, Jan and Renz, Wolfgang and Niendorf, Thoralf}, title = {From Artifact to Merit: Cardiac Gated MRI at 7T \& 3T using Magneto-Hydrodynamic Effects for Synchronization}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {ECG is corrupted by magneto-hydrodynamic effects at higher magnetic field strength. Artifacts in the ECG trace and severe T-wave elevation might be mis-interpreted as R-waves. MHD being inherently sensitive to blood flow and blood velocity provides an alternative approach for cardiac gating, even in peripheral target areas far away from the commonly used upper torso positions of ECG electrodes. This feature would be very beneficial to address traveling time induced motion artifacts and trigger latency related issues raised by ECG-gated peripheral MR angiography. For all those reasons, this work proposes the use of MHD-trigger for cardiac gated MR.}, language = {en} } @misc{FrauenrathdeGeyerd'OrthNiendorf2011, author = {Frauenrath, Tobias and de Geyer d'Orth, Thibaut and Niendorf, Thoralf}, title = {Assessment of Accuracy \& Reproducibility of ECG, Pulse Oximetry \& Phonocardiogram Gating of Cardiac MRI at 7T}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {At (ultra)high magnetic fields the artifact sensitivity of ECG recordings increases. This bears the risk of R-wave mis-registration which has been consistently reported for ECG triggered CMR at 7.0T. Realizing the constraints of conventional ECG, acoustic cardiac triggering (ACT) has been proposed. The clinical ACT has not been carefully examined yet. For this reason, this work scrutinizes the suitability, accuracy and reproducibility of ACT for CMR at 7.0T. For this purpose, the trigger reliability and trigger detection variance are examined together with an qualitative and quantitative assessment of image quality of the heart at 7.0T.}, language = {en} } @misc{MartinFrauenrathZerdemetal.2011, author = {Martin, Conrad Steven and Frauenrath, Tobias and Zerdem, Celal and Renz, Wolfgang and Niendorf, Thoralf}, title = {Evaluation of Magneto Alert Sensor (MALSE) to Improve MR Safety by Decreasing the Incidence of Ferromagnetic Projectile Accidents}, series = {2011 ISMRM Annual Meeting Proceedings}, journal = {2011 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2011}, abstract = {The magnetic forces of fringe magnetic fields of MR systems on ferromagnetic components can impose a severe patient, occupational health and safety hazard. MRI accidents are listed as number 9 of the top 10 risks in modern medicine. With the advent of ultrahigh field MR systems including passively shielded magnet versions, this risk, commonly known as the missile or projectile effect is even more pronounced. A strategy employing magnetic field sensors which can be attached to ferromagnetic objects that are commonly used in a clinical environment is conceptually appealing for the pursuit of reducing the risk of ferromagnetic projectile accidents.}, language = {en} }