@inproceedings{PijanowskaRemiszewska2006, author = {Pijanowska, Dorota G. and Remiszewska, Elzbieta}, title = {pH-based detection of phenylalnine by potentiometric and colorimetric methods}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1536}, year = {2006}, abstract = {In this paper, methods of sample preparation for potentiometric measurement of phenylalanine are presented. Basing on the spectrophotometric measurements of phenylalanine, the concentrations of reagents of the enzymatic reaction (10 mM L-Phe, 0,4 mM NAD+, 2U L-PheDH) were determined. Then, the absorption spectrum of the reaction product, NADH, was monitored (maximum peak at 340 nm). The results obtained by the spectrophotometric method were compared with the results obtained by the colourimetry, using pH indicators. The above-mentioned two methods will be used as references for potentiometric measurements of phenylalanine concentration.}, subject = {Biosensor}, language = {en} } @inproceedings{NaetherJuarezEmmerichetal.2006, author = {N{\"a}ther, Niko and Ju{\´a}rez, Leon M. and Emmerich, R{\"u}diger and Berger, J{\"o}rg and Friedrich, Peter and Sch{\"o}ning, Michael Josef}, title = {Detection of hydrogen peroxide (H2O2) at exposed temperatures for industrial processes}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1418}, year = {2006}, abstract = {An H2O2 sensor for the application in industrial sterilisation processes has been developed. Therefore, automated sterilisation equipment at laboratory scale has been constructed using parts from industrial sterilisation facilities. In addition, a software tool has been developed for the control of the sterilisation equipment at laboratory scale. First measurements with the developed sensor set-up as part of the sterilisation equipment have been performed and the sensor has been physically characterised by optical microscopy and SEM.}, subject = {Biosensor}, language = {en} } @misc{Mueller2006, author = {M{\"u}ller, Bernd}, title = {Experimenteller Prototyp zur ontologiebasierten Suche in einem Multi-Agenten-System}, pages = {71 Seiten}, year = {2006}, language = {de} } @inproceedings{MirmohseniRostamizadeh2006, author = {Mirmohseni, Abdolreza and Rostamizadeh, Kobra}, title = {Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1434}, year = {2006}, abstract = {Quartz crystal nanobalance (QCN) sensors are considered as powerful masssensitive sensors to determine materials in the sub-nanogram level. In this study, a single piezoelectric quartz crystal nanobalance modified with polystyrene was employed to detect benzene, toluene, ethylbenzene and xylene (BTEX compounds). The frequency shift of the QCN sensor was found to be linear against the BTEX compound concentrations in the range about 1-45 mg l-1. The correlation coefficients for benzene, toluene, ethylbenzene, and xylene were 0.991, 0.9977, 0.9946 and 0.9971, respectively. The principal component analysis was also utilized to process the frequency response data of the single piezoelectric crystal at different times, considering to the different adsorption-desorption dynamics of BTEX compounds. Using principal component analysis, it was found that over 90\% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful identification of benzene and toluene was possible through the principal component analysis of the transient responses of the polystyrene modified QCN sensor. The results showed that the polystyrene-modified QCN had favorable identification and quantification performances for the BTEX compounds.}, subject = {Biosensor}, language = {en} } @inproceedings{MertenConradKaemperetal.2006, author = {Merten, Sabine and Conrad, Thorsten and K{\"a}mper, Klaus-Peter and Picard, Antoni and Sch{\"u}tze, Andreas}, title = {Virtual Technology Labs - an efficient tool for the preparation of hands-on-MEMS-courses in training foundries}, year = {2006}, abstract = {Hands-on-training in high technology areas is usually limited due to the high cost for lab infrastructure and equipment. One specific example is the field of MEMS, where investment and upkeep of clean rooms with microtechnology equipment is either financed by production or R\&D projects greatly reducing the availability for education purposes. For efficient hands-on-courses a MEMS training foundry, currently used jointly by six higher education institutions, was established at FH Kaiserslautern. In a typical one week course, students manufacture a micromachined pressure sensor including all lithography, thin film and packaging steps. This compact and yet complete program is only possible because participants learn to use the different complex machines in advance via a Virtual Training Lab (VTL). In this paper we present the concept of the MEMS training foundry and the VTL preparation together with results from a scientific evaluation of the VTL over the last three years.}, subject = {Virtuelles Laboratorium}, language = {en} } @inproceedings{LeiMulchandaniChenetal.2006, author = {Lei, Yu and Mulchandani, Priti and Chen, Wilfred and Mulchandani, Ashok}, title = {Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface expressed organophosphorus hydrolase. 1. modified clark oxygen electrode}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1573}, year = {2006}, abstract = {This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transducer. Surfaceexpressed OPH catalyzed the hydrolysis of fenitrothion and EPN to release 3-methyl-4-nitrophenol and p-nitrophenol, respectively, which were oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen, which was measured and correlated to the concentration of organophosphates. Under the optimum operating conditions, the biosensor was able to measure as low as 277 ppb of fenitrothion and 1.6 ppm of EPN without interference from phenolic compounds and other commonly used pesticides such as carbamate pesticides, triazine herbicides and organophosphate pesticides without nitrophenyl substituent. The applicability of the biosensor to lake water was also demonstrated.}, subject = {Biosensor}, language = {en} } @inproceedings{KreutzLoergenGraeweetal.2006, author = {Kreutz, Christian and L{\"o}rgen, J{\"u}rgen and Graewe, Boris and Bargon, Joachim and Yoshida, Mayumi and Freso, Zachary M. and Fr{\`e}chet, Jean M. J.}, title = {High frequency quartz micro balances: a promising path to enhanced sensitivity of gravimetric sensors}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1445}, year = {2006}, abstract = {An array of 50 MHz quartz microbalances (QMBs) coated with a dendronized polymer was used to detect small amounts of volatile organic compounds (VOCs) in the gas phase. The results were compared to those obtained with the commonly used 10 MHz QMBs. The 50 MHz QMBs proved to be a powerful tool for the detection of VOCs in the gas phase; therefore, they represent a promising alternative to the much more delicate surface acoustic wave devices (SAWs).}, subject = {Biosensor}, language = {en} } @inproceedings{Kretschmann2006, author = {Kretschmann, Lars}, title = {Planung und Bauleitung Buschtunnel Aachen}, year = {2006}, abstract = {In: Alfha.net / Sektion Bauingenieurwesen: 1. [Erster] Erfahrungsaustausch : Absolventen des Fachbereichs Bauingenieurwesens berichten. 13. Oktober 2006. S. 16-17 Der Umbau des Aachener Buschtunnels im Rahmen des europ{\"a}ischen Hochgeschwindigkeitsschienennetzes wird im sogenannten "Neuen {\"O}sterreichischen Tunnelbauverfahren (NOeT)", also ein Ausbau in Kalotte, Strosse und Sohle durchgef{\"u}hrt.}, subject = {Bauplanung}, language = {de} } @misc{KremerBurdaPferd2006, author = {Kremer, H.-Hugo and Burda, Arne and Pferd, Frederik G.}, title = {Mentoring-Modell Paderborn (MeMoPad). Handbuch f{\"u}r Mentoren}, organization = {Universit{\"a}t Paderborn}, year = {2006}, abstract = {Mit freundlicher Genehmigung der Autoren (Stand 02.2006) Inhaltsverzeichnis: 0 Vorwort 1 Warum brauchen wir MeMoPad? Begr{\"u}ndungslinien. 1.1 Was fordern Studierende? 1.2 Welche Vorteile ergeben sich f{\"u}r die Fakult{\"a}t? 1.3 Zusammenfassung 2 MeMoPad - Das Mentorenprogramm an der Universit{\"a}t Paderborn 2.1 Qualit{\"a}tsmerkmale eines Mentorenprogramms 2.2 Rolle und Aufgaben von Mentoren 2.3 Didaktische Implikationen 3 Das Rahmenkonzept - Betreuungsgebiete (BG) im {\"U}berblick 4 Organisatorisches 5 Die Umsetzung - Betreuungsgebiete im Detail 5.1 BG0: "Was bringt mir MeMoPad?" Materialien 5.2 BG1: "Leben an der Hochschule: Was bedeutet ‚studieren'?" 5.2.1 Didaktische Hinweise 5.2.2 M{\"o}glicher Ablauf Materialien 5.3 BG2: "Was bedeutet ‚lernen' in der Hochschule?" 5.3.1 Didaktische Hinweise 5.3.2 M{\"o}glicher Ablauf Materialien 5.4 BG3: "Warum und wie (ge)braucht man wissenschaftliche Standards?" 5.4.1 Didaktische Hinweise 5.4.2 M{\"o}glicher Ablauf Materialien 5.5 BG4: "Wie pr{\"a}sentiert man (sich) erfolgreich?" 5.5.1 Didaktische Hinweise 5.5.2 M{\"o}glicher Ablauf Materialien 5.6 BG5: "Wie kann ich mich pers{\"o}nlich weiterentwickeln?" 5.5.1 Didaktische Hinweise 5.5.2 M{\"o}glicher Ablauf Materialien}, subject = {Hochschuldidaktik}, language = {de} } @inproceedings{KraftRetkowitz2006, author = {Kraft, Bodo and Retkowitz, Daniel}, title = {Graph Transformations for Dynamic Knowledge Processing}, year = {2006}, abstract = {In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, 2006. HICSS '06 http://dx.doi.org/10.1109/HICSS.2006.200 The conceptual design phase at the beginning of the building construction process is not adequately supported by any CAD-tool. Conceptual design support needs regarding two aspects: first, the architect must be able to develop conceptual sketches that provide abstraction from constructive details. Second, conceptually relevant knowledge should be available to check these conceptual sketches. The paper deals with knowledge to formalize for conceptual design. To enable domain experts formalizing knowledge, a graph-based specification is presented that allows the development of a domain ontology and design rules specific for one class of buildings at runtime. The provided tool support illustrates the introduced concepts and demonstrates the consistency analysis between knowledge and conceptual design.}, subject = {CAD}, language = {de} }