@inproceedings{OhndorfDachwaldSeboldtetal.2011, author = {Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and Schartner, Karl-Heinz}, title = {Flight times to the heliopause using a combination of solar and radioisotope electric propulsion}, series = {32nd International Electric Propulsion Conference}, booktitle = {32nd International Electric Propulsion Conference}, pages = {1 -- 12}, year = {2011}, abstract = {We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere's "nose".}, language = {en} } @inproceedings{DachwaldXuFeldmannetal.2011, author = {Dachwald, Bernd and Xu, Changsheng and Feldmann, Marco and Plescher, Engelbert and Digel, Ilya and Artmann, Gerhard}, title = {Development and testing of a subsurface probe for detection of life in deep ice : [abstract]}, year = {2011}, abstract = {We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named "IceMole", is currently developed, built, and tested at the FH Aachen University of Applied Sciences' Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth).}, subject = {Eisschicht}, language = {en} } @inproceedings{ArtmannDigelLinderetal.2011, author = {Artmann, Gerhard and Digel, Ilya and Linder, Peter and Temiz Artmann, Ayseg{\"u}l}, title = {Biophysical and Engineering Contributions to Plant Research}, year = {2011}, abstract = {Tests with palm tree leaves have just started yet and scan data are in the process to be analyzed. The final goal of future project for palm tree gender and species recognition will be to develop optical scanning technology to be applied to date palm tree leaves for in-situ screening purposes. Depending on the software used and the particular requirements of the users the technology potentially shall be able to identify palm tree diseases, palm tree gender, and species of young date palm trees by scanning leaves.}, subject = {Pflanzenphysiologie}, language = {en} } @inproceedings{TranNovacekTolbaetal.2011, author = {Tran, Thanh Ngoc and Novacek, V. and Tolba, R. and Klinge, U. and Turquier, F. and Staat, Manfred}, title = {Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011}, year = {2011}, abstract = {Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue.}, subject = {Anastomose}, language = {en} }