@book{KernWettingfeld2014, author = {Kern, Alexander and Wettingfeld, J{\"u}rgen}, title = {Blitzschutzsysteme 1 : allgemeine Grunds{\"a}tze, Risikomanagement, Schutz von baulichen Anlagen und Personen ; Erl{\"a}uterungen zu den Normen DIN EN 62305-1 (VDE 0185-305-1):2011-10, DIN EN 62305-2 (VDE 0185-305-2):2013-02, DIN EN 62305-3 (VDE 0185-305-3):2011-10. (VDE-Schriftenreihe Normen verst{\"a}ndlich ; 44)}, publisher = {VDE-Verl.}, address = {Berlin [u.a.]}, isbn = {978-3-8007-3511-2}, pages = {308 S.}, year = {2014}, language = {de} } @book{KernWettingfeld2015, author = {Kern, Alexander and Wettingfeld, J{\"u}rgen}, title = {Blitzschutzsysteme 2 : Schutz f{\"u}r besondere bauliche Anlagen ; Schutz f{\"u}r elektrische und elektronische Systeme in baulichen Anlagen ; Erl{\"a}uterungen zu den Normen DIN EN 62305-3 (VDE 0185-305-3):2011-10, DIN EN 62305-4 (VDE 0185-305-4):2011-10. (VDE-Schriftenreihe Normen verst{\"a}ndlich ; 160)}, publisher = {VDE-Verl.}, address = {Berlin [u.a.]}, isbn = {978-3-8007-3653-9}, pages = {247 S.}, year = {2015}, language = {de} } @article{KernSchelthoffMathieu2011, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for airterminations using a dynamic electro-geometrical model}, publisher = {IEEE}, address = {New York}, pages = {1 -- 6}, year = {2011}, language = {en} } @inproceedings{KernSchelthoffMathieu2012, author = {Kern, Alexander and Schelthoff, Christof and Mathieu, Moritz}, title = {Calculation of interception efficiencies for mesh-type air-terminations according to IEC 62305-3 using a dynamic electro-geometrical model}, series = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, booktitle = {International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {International Conference on Lightning Protection <2012, Wien>}, isbn = {978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print)}, pages = {1 -- 6}, year = {2012}, language = {en} } @article{KernWiesingerZischank1991, author = {Kern, Alexander and Wiesinger, J. and Zischank, Wolfgang J.}, title = {Calculation of the longitudinal voltage along metal tubes caused by lightning currents and protection measures}, series = {Seventh International Symposium on High Voltage Engineering : Dresden, August 26 - 30 1991}, journal = {Seventh International Symposium on High Voltage Engineering : Dresden, August 26 - 30 1991}, publisher = {Techn. Univ.}, address = {Dresden}, year = {1991}, language = {en} } @inproceedings{KernBeierlZischank2009, author = {Kern, Alexander and Beierl, Ottmar and Zischank, Wolfgang}, title = {Calculation of the separation distance according to IEC 62305-3: 2006-10 - Remarks for the application and simplified methods}, year = {2009}, abstract = {[Paper of the X International Symposium on Lightning Protection 9th - 13th November, 2009 - Curitiba, Brazil. 6 pages] The international standard IEC 62305-3, published in 2006, requires as an integral part of the lightning protection system (LPS) the consideration of a separation distance between the conductors of the LPS and metal and electrical installations inside the structure to be protected. IEC 62305-3 gives two different methods for this calculation: a standard, simplified approach and a more detailed approach, which differ especially regarding the treatment of the current sharing effect on the LPS conductors. Hence, different results for the separation distance are possible, leading to some discrepancies in the use of the standard. The standard approach defined in the main part (Clause 6.3) and in Annex C of the standard in some cases may lead to a severe oversizing of the required separation distance. The detailed approach described in Annex E naturally gives more correct results. However, a calculation of the current sharing amongst all parts of the air-termination and downconductor network is necessary, in many cases requiring the use of network analysis programs. In this paper simplified methods for the assessment of the current sharing are presented, which are easy to use as well as sufficiently adequate.}, subject = {Blitzschutz}, language = {de} } @article{KernThomsen1994, author = {Kern, Alexander and Thomsen, M.}, title = {Comparison of single point and equipotential bonding for I\&C systems of large-area industrial sites}, series = {Volume of proceedings : Budapest, Hungary, September 19-23, 1994 / organized by: Technical University of Budapest}, journal = {Volume of proceedings : Budapest, Hungary, September 19-23, 1994 / organized by: Technical University of Budapest}, publisher = {Techn. Univ.}, address = {Budapest}, pages = {Getr. Z{\"a}hlung [ca. 610 S.]}, year = {1994}, language = {en} } @article{KernRothWiedmann1992, author = {Kern, Alexander and Roth, J. and Wiedmann, J.}, title = {Comparison of the damage for various types of fibre reinforced composites due to different lightning test standards (MIL-STD 1757 A, German military VG-standard 96903)}, series = {Proceedings of the 1992 International Aerospace and Ground Conference on Lightning and Static Electricity : October 6-8, 1992, Trump Taj Mahal, Atlantic City, NJ.}, journal = {Proceedings of the 1992 International Aerospace and Ground Conference on Lightning and Static Electricity : October 6-8, 1992, Trump Taj Mahal, Atlantic City, NJ.}, publisher = {U.S. Dept. of Transportation, Federal Aviation Administration}, address = {[Atlantic City, N.J.]}, pages = {Getr. Z{\"a}hl. : Ill. + addendum}, year = {1992}, language = {en} } @article{KernKrichel2004, author = {Kern, Alexander and Krichel, Frank}, title = {Considerations about the lightning protection system of mains independent renewable energy hybrid-systems - practical experiences}, series = {Journal of electrostatics. 60 (2004), H. 2-4}, journal = {Journal of electrostatics. 60 (2004), H. 2-4}, isbn = {0304-3886}, pages = {257 -- 263}, year = {2004}, language = {en} } @inproceedings{KernKrichel2002, author = {Kern, Alexander and Krichel, Frank}, title = {Considerations about the lightning protection system of mains independent renewable energy hybrid-systems - practical experiences}, year = {2002}, abstract = {In the paper a lightning protection design concept for renewable energy hybrid-systems without power mains connection is described. Based on a risk analysis protection measures against direct strikes and overvoltages are shown in an overview. The design concept is realized exemplarily for the hybrid-system VATALI on the Greek island Crete. VATALI, not lightning protected at that time, was a victim of a lightning strike in the year 2000 causing destructions and damages of some mechanical and electrical components with costs of approx. 60.000 €. The hardware costs for the protection measures were about 15.000 €: about 50\% of the costs are due to protection measures against direct strikes, 50\% are due to overvoltage protection.}, language = {en} }