@article{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel B.}, title = {Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow}, series = {Environmental Modelling and Software}, volume = {82}, journal = {Environmental Modelling and Software}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-8152 (electronic)}, doi = {10.1016/j.envsoft.2016.04.030}, pages = {218 -- 228}, year = {2016}, abstract = {Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies.}, language = {en} } @article{OertelBung2015, author = {Oertel, Mario and Bung, Daniel B.}, title = {Stability and scour development of bed material on crossbar block ramps}, series = {International journal of sediment research}, volume = {30}, journal = {International journal of sediment research}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1001-6279}, doi = {10.1016/j.ijsrc.2014.12.003}, pages = {344 -- 350}, year = {2015}, abstract = {Block ramps are ecologically oriented drop structures with adequate energy dissipation and partially moderate flow velocities. A special case is given with crossbar block ramps, where the upstream and downstream level difference is reduced by a series of basins. To prevent the total structure from failing, the stability of single boulders within the crossbars and the bed material in between must be guaranteed. The present paper addresses the stability of bed material and scour development for various flow regimes. Any bed material erosion may affect the stability of the crossbar boulders, which in turn can result in major damages of the ramp. Therefore new design approaches are developed to choose an appropriate bed material size and to avoid failures of crossbar block ramp structures.}, language = {en} } @article{KramerValeroChansonetal.2019, author = {Kramer, Matthias and Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique}, series = {Experiments in Fluids}, volume = {60}, journal = {Experiments in Fluids}, publisher = {Springer}, address = {Berlin}, issn = {1432-1114}, doi = {10.1007/s00348-018-2650-9}, year = {2019}, language = {en} } @article{BungCrookstonValero2020, author = {Bung, Daniel B. and Crookston, Brian M. and Valero, Daniel}, title = {Turbulent free-surface monitoring with an RGB-D sensor: the hydraulic jump case}, series = {Journal of Hydraulic Research}, journal = {Journal of Hydraulic Research}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079}, doi = {10.1080/00221686.2020.1844810}, year = {2020}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001485}, year = {2018}, abstract = {A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.}, language = {en} }