@article{RietschBrunheimOrzadaetal.2019, author = {Rietsch, Stefan H. G. and Brunheim, Sascha and Orzada, Stephan and Voelker, Maximilian N. and Maderwald, Stefan and Bitz, Andreas and Gratz, Marcel and Ladd, Mark E. and Quick, Harald H.}, title = {Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27731}, year = {2019}, language = {en} } @article{SchoppBritunVoracetal.2019, author = {Schopp, Christoph and Britun, Nikolay and Vorac, Jan and Synek, Petr and Snyders, Rony and Heuermann, Holger}, title = {Thermal and Optical Study on the Frequency Dependence of an Atmospheric Microwave Argon Plasma Jet}, series = {IEEE Transactions on Plasma Science}, volume = {47}, journal = {IEEE Transactions on Plasma Science}, number = {7}, publisher = {IEEE}, address = {New York}, issn = {1939-9375}, pages = {3176 -- 3181}, year = {2019}, language = {en} } @article{SchmidtForkmannSchultzetal.2019, author = {Schmidt, Katharina and Forkmann, Katarina and Schultz, Heidrun and Gratz, Marcel and Bitz, Andreas and Wiech, Katja and Bingel, Ulrike}, title = {Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain}, series = {The Journal of Pain}, journal = {The Journal of Pain}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1526-5900}, doi = {10.1016/j.jpain.2019.03.003}, year = {2019}, language = {en} } @article{ClaerFerreinSchiffer2019, author = {Claer, Mario and Ferrein, Alexander and Schiffer, Stefan}, title = {Calibration of a Rotating or Revolving Platform with a LiDAR Sensor}, series = {Applied Sciences}, volume = {Volume 9}, journal = {Applied Sciences}, number = {issue 11, 2238}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app9112238}, pages = {18 Seiten}, year = {2019}, language = {en} } @article{OrzadaSolbachGratzetal.2019, author = {Orzada, Stephan and Solbach, Klaus and Gratz, Marcel and Brunheim, Sascha and Fiedler, Thomas M. and Johst, S{\"o}ren and Bitz, Andreas and Shooshtary, Samaneh and Abuelhaija, Asjraf and Voelker, Maximilian N. and Rietsch, Stefan H. G. and Kraff, Oliver and Maderwald, Stefan and Fl{\"o}ser, Martina and Oehmingen, Mark and Quick, Harald H. and Ladd, Mark E.}, title = {A 32-channel parallel transmit system add-on for 7T MRI}, series = {Plos one}, journal = {Plos one}, doi = {10.1371/journal.pone.0222452}, year = {2019}, language = {en} } @article{NoureddineKraffLaddetal.2019, author = {Noureddine, Yacine and Kraff, Oliver and Ladd, Mark E. and Wrede, Karsten and Chen, Bixia and Quick, Harald H. and Schaefers, Georg and Bitz, Andreas}, title = {Radiofrequency induced heating around aneurysm clips using a generic birdcage head coil at 7 Tesla under consideration of the minimum distance to decouple multiple aneurysm clips}, series = {Magnetic Resonance in Medicine}, journal = {Magnetic Resonance in Medicine}, number = {Early view}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2594}, doi = {10.1002/mrm.27835}, pages = {1 -- 17}, year = {2019}, language = {en} } @article{LimpertWiesenFerreinetal.2019, author = {Limpert, Nicolas and Wiesen, Patrick and Ferrein, Alexander and Kallweit, Stephan and Schiffer, Stefan}, title = {The ROSIN Project and its Outreach to South Africa}, series = {R\&D Journal}, volume = {35}, journal = {R\&D Journal}, pages = {1 -- 6}, year = {2019}, language = {en} } @article{HueningHeuermannWacheetal.2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef and Jajo, Rami Audisho}, title = {A new wireless sensor interface using dual-mode radio}, series = {Journal of Sensors and Sensor Systems : JSSS}, volume = {Volume 7}, journal = {Journal of Sensors and Sensor Systems : JSSS}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, doi = {10.5194/jsss-7-507-2018}, pages = {507 -- 515}, year = {2018}, abstract = {The integration of sensors is one of the major tasks in embedded, control and "internet of things" (IoT) applications. For the integration mainly digital interfaces are used, starting from rather simple pulse-width modulation (PWM) interface to more complex interfaces like CAN (Controller Area Network). Even though these interfaces are tethered by definition, a wireless realization is highly welcome in many applications to reduce cable and connector cost, increase the flexibility and realize new emerging applications like wireless control systems. Currently used wireless solutions like Bluetooth, WirelessHART or IO-Link Wireless use dedicated communication standards and corresponding higher protocol layers to realize the wireless communication. Due to the complexity of the communication and the protocol handling, additional latency and jitter are introduced to the data communication that can meet the requirements for many applications. Even though tunnelling of other bus data like CAN data is generally also possible the latency and jitter prevent the tunnelling from being transparent for the bus system. Therefore a new basic technology based on dual-mode radio is used to realize a wireless communication on the physical layer only, enabling a reliable and real-time data transfer. As this system operates on the physical layer it is independent of any higher layers of the OSI (open systems interconnection) model. Hence it can be used for several different communication systems to replace the tethered physical layer. A prototype is developed and tested for real-time wireless PWM, SENT (single-edge nibble transmission) and CAN data transfer with very low latency and jitter.}, language = {en} } @article{SchifferFerrein2018, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {ERIKA—Early Robotics Introduction at Kindergarten Age}, series = {Multimodal Technologies Interact}, volume = {2}, journal = {Multimodal Technologies Interact}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2414-4088}, doi = {10.3390/mti2040064}, pages = {15}, year = {2018}, abstract = {In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human-robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents.}, language = {en} } @article{HueningHeuermannWache2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef}, title = {Wireless CAN without WLAN or Bluetooth}, series = {CAN Newsletter}, journal = {CAN Newsletter}, number = {December 2018}, pages = {44 -- 46}, year = {2018}, abstract = {In two developed concepts, dual-mode radio enables CAN participants to be integrated wirelessly into a CAN network. Constructed from a few components, a protocol-free, real-time transmission and thus transparent integration into CAN is provided.}, language = {en} }