@inproceedings{FerreinMeessenLimpertetal.2021, author = {Ferrein, Alexander and Meeßen, Marcus and Limpert, Nicolas and Schiffer, Stefan}, title = {Compiling ROS Schooling Curricula via Contentual Taxonomies}, series = {Robotics in Education}, booktitle = {Robotics in Education}, editor = {Lepuschitz, Wilfried}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-67411-3}, doi = {10.1007/978-3-030-67411-3_5}, pages = {49 -- 60}, year = {2021}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @article{SerrorHackHenzeetal.2021, author = {Serror, Martin and Hack, Sacha and Henze, Martin and Schuba, Marko and Wehrle, Klaus}, title = {Challenges and Opportunities in Securing the Industrial Internet of Things}, series = {IEEE Transactions on Industrial Informatics}, volume = {17}, journal = {IEEE Transactions on Industrial Informatics}, number = {5}, publisher = {IEEE}, address = {New York}, issn = {1941-0050}, doi = {10.1109/TII.2020.3023507}, pages = {2985 -- 2996}, year = {2021}, language = {en} } @article{HarzheimMuehmelHeuermann2021, author = {Harzheim, Thomas and M{\"u}hmel, Marc and Heuermann, Holger}, title = {A SFCW harmonic radar system for maritime search and rescue using passive and active tags}, series = {International Journal of Microwave and Wireless Technologies}, volume = {13}, journal = {International Journal of Microwave and Wireless Technologies}, number = {Special Issue 7}, publisher = {Cambridge University Press}, address = {Cambridge}, doi = {10.1017/S1759078721000520}, pages = {691 -- 707}, year = {2021}, abstract = {This paper introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested while attached to life jackets and a small boat. In this demonstration test carried out on the Baltic Sea, the system was able to detect and range the active tags up to a distance of 5800 m using an illumination signal transmit-power of 100 W. Special attention is given to the development, performance, and conceptual differences between passive and active tags used in the system. Guidelines for achieving a high HR dynamic range, including a system components description, are given and a comparison with other HR systems is performed. System integration with a commercial maritime X-band navigation radar is shown to demonstrate a solution for rapid search and rescue response and quick localization.}, language = {en} } @inproceedings{HeuermannHarzheimMuehmel2021, author = {Heuermann, Holger and Harzheim, Thomas and M{\"u}hmel, Marc}, title = {A maritime harmonic radar search and rescue system using passive and active tags}, series = {2020 17th European Radar Conference (EuRAD)}, booktitle = {2020 17th European Radar Conference (EuRAD)}, publisher = {IEEE}, isbn = {978-2-87487-061-3}, doi = {10.1109/EuRAD48048.2021.00030}, pages = {73 -- 76}, year = {2021}, language = {en} } @article{FaganBitzBjoerkmanBurtscheretal.2021, author = {Fagan, Andrew J. and Bitz, Andreas and Bj{\"o}rkman-Burtscher, Isabella M. and Collins, Christopher M. and Kimbrell, Vera and Raaijmakers, Alexander J. E.}, title = {7T MR Safety}, series = {Journal of Magnetic Resonance Imaging (JMRI)}, volume = {53}, journal = {Journal of Magnetic Resonance Imaging (JMRI)}, number = {2}, publisher = {Wiley}, address = {Weinheim}, issn = {1522-2586}, doi = {10.1002/jmri.27319}, pages = {333 -- 346}, year = {2021}, language = {en} }