@article{MiyamotoYoshidaSakaietal.2011, author = {Miyamoto, Ko-ichiro and Yoshida, Midori and Sakai, Taito and Matsuzaka, Atsushi and Wagner, Torsten and Kanoh, Sanoh and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel}, series = {Japanese Journal of Applied Physics. 50 (2011)}, journal = {Japanese Journal of Applied Physics. 50 (2011)}, publisher = {Japan Society of Applied Physics}, address = {Bristol}, isbn = {0021-4922}, pages = {04DL08-1 -- 04DL08-5}, year = {2011}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{MiyamotoWagnerMimuraetal.2009, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin`ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1876-6196}, pages = {1487 -- 1490}, year = {2009}, language = {en} } @article{MiyamotoWagnerMimuraetal.2011, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin{\´i}chiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {119 -- 123}, year = {2011}, language = {en} } @article{MiyamotoIchimuraWagneretal.2013, author = {Miyamoto, Ko-ichiro and Ichimura, Hiroki and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel}, series = {Sensors and actuators. B: Chemical}, volume = {189}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2013.04.057}, pages = {240 -- 245}, year = {2013}, abstract = {The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation.}, language = {en} } @article{MiyamotoHayashiSakamotoetal.2017, author = {Miyamoto, Ko-ichiro and Hayashi, Kosuke and Sakamoto, Azuma and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance}, series = {Sensor and Actuators B: Chemical}, volume = {248}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.03.002}, pages = {1006 -- 1010}, year = {2017}, abstract = {An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1\% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change.}, language = {en} }