@article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} } @article{MoehrenBergmannJanseretal.2024, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {Assessment of structural mechanical effects related to torsional deformations of propellers}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00737-7}, pages = {22 Seiten}, year = {2024}, abstract = {Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension-twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5\% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension-twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller's stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material.}, language = {en} } @inproceedings{KramerBragardRitzetal.2024, author = {Kramer, Pia and Bragard, Michael and Ritz, Thomas and Ferfer, Ute and Schiffers, Tim}, title = {Visualizing, Enhancing and Predicting Students' Success through ECTS Monitoring}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578652}, pages = {5 Seiten}, year = {2024}, abstract = {This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy.}, language = {en} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} } @inproceedings{KahraBreussKleefeldetal.2024, author = {Kahra, Marvin and Breuß, Michael and Kleefeld, Andreas and Welk, Martin}, title = {An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation}, series = {Discrete Geometry and Mathematical Morphology}, booktitle = {Discrete Geometry and Mathematical Morphology}, editor = {Brunetti, Sara and Frosini, Andrea and Rinaldi, Simone}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-57793-2}, doi = {10.1007/978-3-031-57793-2_25}, pages = {325 -- 337}, year = {2024}, abstract = {Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.}, language = {en} } @article{HoffstadtNikolauszKrafftetal.2024, author = {Hoffstadt, Kevin and Nikolausz, Marcell and Krafft, Simone and Bonatelli, Maria and Kumar, Vivekanantha and Harms, Hauke and Kuperjans, Isabel}, title = {Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation}, series = {Bioengineering}, volume = {11}, journal = {Bioengineering}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering11020165}, pages = {18 Seiten}, year = {2024}, language = {en} } @article{HafidiElHatkaSchmitzetal.2024, author = {Hafidi, Youssef and El Hatka, Hicham and Schmitz, Dominik and Krauss, Manuel and Pettrak, J{\"u}rgen and Biel, Markus and Ittobane, Najim}, title = {Sustainable soil additives for water and micronutrient supply: swelling and chelating properties of polyaspartic acid hydrogels utilizing newly developed crosslinkers}, series = {Gels}, volume = {10}, journal = {Gels}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2310-2861}, doi = {10.3390/gels10030170}, pages = {Artikel 170}, year = {2024}, abstract = {Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10\% vs. 20\%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.}, language = {en} } @article{HaegerJolmesOyenetal.2024, author = {Haeger, Gerrit and Jolmes, Tristan and Oyen, Sven and Jaeger, Karl-Erich and Bongaerts, Johannes and Sch{\"o}rken, Ulrich and Siegert, Petra}, title = {Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis}, series = {Applied Microbiology and Biotechnology}, journal = {Applied Microbiology and Biotechnology}, number = {108}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12868-8}, pages = {14 Seiten}, year = {2024}, abstract = {N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75\%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR.}, language = {en} } @unpublished{GriegerMehrkanoonBialonski2024, author = {Grieger, Niklas and Mehrkanoon, Siamak and Bialonski, Stephan}, title = {Preprint: Data-efficient sleep staging with synthetic time series pretraining}, series = {arXiv}, journal = {arXiv}, pages = {10 Seiten}, year = {2024}, abstract = {Analyzing electroencephalographic (EEG) time series can be challenging, especially with deep neural networks, due to the large variability among human subjects and often small datasets. To address these challenges, various strategies, such as self-supervised learning, have been suggested, but they typically rely on extensive empirical datasets. Inspired by recent advances in computer vision, we propose a pretraining task termed "frequency pretraining" to pretrain a neural network for sleep staging by predicting the frequency content of randomly generated synthetic time series. Our experiments demonstrate that our method surpasses fully supervised learning in scenarios with limited data and few subjects, and matches its performance in regimes with many subjects. Furthermore, our results underline the relevance of frequency information for sleep stage scoring, while also demonstrating that deep neural networks utilize information beyond frequencies to enhance sleep staging performance, which is consistent with previous research. We anticipate that our approach will be advantageous across a broad spectrum of applications where EEG data is limited or derived from a small number of subjects, including the domain of brain-computer interfaces.}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @book{DrummScheuermannWeidner2024, author = {Drumm, Christian and Scheuermann, Bernd and Weidner, Stefan}, title = {Introduction to SAP S/4HANA® : The official companion book based on model company Global Bike-for learning, teaching, and training}, publisher = {Espresso Tutorials}, address = {Gleichen}, isbn = {9783960122685}, pages = {619 Seiten}, year = {2024}, abstract = {This easy-to-understand introduction to SAP S/4HANA guides you through the central processes in sales, purchasing and procurement, finance, production, and warehouse management using the model company Global Bike. Familiarize yourself with the basics of business administration, the relevant organizational data, master data, and transactional data, as well as a selection of core business processes in SAP. Using practical examples and tutorials, you will soon become an SAP S/4HANA professional! Tutorials and exercises for beginners, advanced users, and experts make it easy for you to practice your new knowledge. The prerequisite for this book is access to an SAP S/4HANA client with Global Bike version 4.1. - Business fundamentals and processes in the SAP system - Sales, purchasing and procurement, production, finance, and warehouse management - Tutorials at different qualification levels, exercises, and recap of case studies - Includes extensive download material for students, lecturers, and professors}, language = {en} } @techreport{Drescher2024, type = {Working Paper}, author = {Drescher, Hans Paul}, title = {Critical review of the 1. Stokes' problem and consequences for mixed turbulent/laminar flow}, pages = {27 Seiten}, year = {2024}, abstract = {The "1. Stokes' problem", the "suddenly accelerated flat wall", is the oldest application of the Navier-Stokes equations. Stokes' solution of the "problem" does not comply with the mathematical theorem of Cauchy and Kowalewskaya on the "Uniqueness and Existence" of solutions of partial differential equations and violates the physical theorem of minimum entropy production/dissipation of the Thermodynamics of Irreversible Processes. The result includes very high local shear stresses and dissipation rates. That is of special interest for the theory of turbulent and mixed turbulent/laminar flow. A textbook solution of the "1. Stokes Problem" is the Couette flow, which has a constant sheer stress along a linear profile. A consequence is that the Navier-Stokes equations do not describe any S-shaped part of a turbulent profile found in any turbulent Couette experiment. The paper surveys arguments referring to that statement, concerning the history of >150 years. Contrary to this there is always a Navier-Stokes solution near the wall, observed by a linear part of the Couette profile. There a turbulent description (e.g. by the logarithmic law-of-the-wall) fails completely. That is explained by the minimum dissipation requirement together with the Couette feature τ = const. The local co-existence of a turbulent zone and a laminar zone near the wall is stable and observed also at high Reynolds-Numbers.}, language = {en} } @article{ClausnitzerKleefeld2024, author = {Clausnitzer, Julian and Kleefeld, Andreas}, title = {A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a C² boundary}, series = {Discrete and Continuous Dynamical Systems - Series B}, volume = {29}, journal = {Discrete and Continuous Dynamical Systems - Series B}, number = {4}, publisher = {AIMS}, address = {Springfield}, issn = {1531-3492}, doi = {10.3934/dcdsb.2023148}, pages = {1624 -- 1651}, year = {2024}, abstract = {We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a C² boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.}, language = {en} } @article{ChwallekNawrathKrastinaetal.2024, author = {Chwallek, Constanze and Nawrath, Lara and Krastina, Anzelika and Bruksle, Ieva}, title = {Supportive research on sustainable entrepreneurship and business practices}, series = {SECA Sustainable Entrepreneurship for Climate Action}, journal = {SECA Sustainable Entrepreneurship for Climate Action}, number = {3}, publisher = {Lapland University of Applied Sciences Ltd}, address = {Rovaniemi}, isbn = {978-952-316-514-4 (pdf)}, issn = {2954-1654 (on-line publication)}, pages = {67 Seiten}, year = {2024}, language = {en} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} } @article{BornheimGriegerBlanecketal.2024, author = {Bornheim, Tobias and Grieger, Niklas and Blaneck, Patrick Gustav and Bialonski, Stephan}, title = {Speaker Attribution in German Parliamentary Debates with QLoRA-adapted Large Language Models}, series = {Journal for language technology and computational linguistics : JLCL}, volume = {37}, journal = {Journal for language technology and computational linguistics : JLCL}, number = {1}, publisher = {Gesellschaft f{\"u}r Sprachtechnologie und Computerlinguistik}, address = {Regensburg}, issn = {2190-6858}, doi = {10.21248/jlcl.37.2024.244}, pages = {13 Seiten}, year = {2024}, abstract = {The growing body of political texts opens up new opportunities for rich insights into political dynamics and ideologies but also increases the workload for manual analysis. Automated speaker attribution, which detects who said what to whom in a speech event and is closely related to semantic role labeling, is an important processing step for computational text analysis. We study the potential of the large language model family Llama 2 to automate speaker attribution in German parliamentary debates from 2017-2021. We fine-tune Llama 2 with QLoRA, an efficient training strategy, and observe our approach to achieve competitive performance in the GermEval 2023 Shared Task On Speaker Attribution in German News Articles and Parliamentary Debates. Our results shed light on the capabilities of large language models in automating speaker attribution, revealing a promising avenue for computational analysis of political discourse and the development of semantic role labeling systems.}, language = {en} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @inproceedings{BeckerBragard2024, author = {Becker, Tim and Bragard, Michael}, title = {Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed}, series = {2024 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2024 IEEE Global Engineering Education Conference (EDUCON)}, publisher = {IEEE}, address = {New York, NY}, issn = {2165-9559}, doi = {10.1109/EDUCON60312.2024.10578902}, pages = {8 Seiten}, year = {2024}, abstract = {After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown.}, language = {en} } @article{AyalaHarrisKleefeld2024, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas}, title = {Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary}, series = {Inverse Problems and Imaging}, volume = {18}, journal = {Inverse Problems and Imaging}, number = {3}, publisher = {AIMS}, address = {Springfield}, issn = {1930-8337}, doi = {10.3934/ipi.2023051}, pages = {708 -- 729}, year = {2024}, abstract = {In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method.}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael J. and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @article{AdelsMonakhova2024, author = {Adels, Klaudia and Monakhova, Yulia}, title = {Low-field NMR spectroscopic study of e-cigarettes: Is determination of only nicotine and organic carrier solvents possible?}, series = {Microchemical Journal}, volume = {203}, journal = {Microchemical Journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1095-9149}, doi = {10.1016/j.microc.2024.110859}, pages = {9 Seiten}, year = {2024}, abstract = {Electronic cigarettes (e-cigarettes) have become popular worldwide with the market growing exponentially in some countries. The absence of product standards and safety regulations requires urgent development of analytical methodologies for the holistic control of the growing diversity of such products. An approach based on low-field nuclear magnetic resonance (LF-NMR) at 80 MHz is presented for the simultaneous determination of key parameters: carrier solvents (vegetable glycerine (VG), propylene glycol (PG) and water), total nicotine as well as free-base nicotine fraction. Moreover, qualitative and quantitative determination of fourteen weak organic acids deliberately added to enhance sensory characteristics of e-cigarettes was possible. In most cases these parameters can be rapidly and conveniently determined without using any sample manipulation such as dilution, extraction or derivatization steps. The method was applied for 37 authentic e-cigarettes samples. In particular, eight different organic acids with the content up to 56 mg/mL were detected. Due to its simplicity, the method can be used in routine regulatory control as well as to study release behaviour of nicotine and other e-cigarettes constituents in different products.}, language = {en} }