@inproceedings{LindenlaufHoefkenSchuba2015, author = {Lindenlauf, Simon and H{\"o}fken, Hans-Wilhelm and Schuba, Marko}, title = {Cold Boot Attacks on DDR2 and DDR3 SDRAM}, series = {10th International Conference on Availability, Reliability and Security (ARES) 2015}, booktitle = {10th International Conference on Availability, Reliability and Security (ARES) 2015}, doi = {10.1109/ARES.2015.28}, pages = {287 -- 292}, year = {2015}, language = {en} } @article{HagemannBackhausGoessner2002, author = {Hagemann, Hans-J{\"u}rgen and Backhaus, U. and Goessner, S.}, title = {Collaborative eLearning Concepts for University Level Online Laboratory Courses in Engineering. U. Backhaus, S. Goessner, H. J. Hagemann}, series = {Proceedings Online Educa Berlin: 8th International Conference on Technology Supported Learning \& Training. 2002}, journal = {Proceedings Online Educa Berlin: 8th International Conference on Technology Supported Learning \& Training. 2002}, pages = {62 -- 66}, year = {2002}, language = {en} } @inproceedings{BitzAlaydrusStreckertetal.2002, author = {Bitz, Andreas and Alaydrus, M. and Streckert, J. and Hansen, V.}, title = {Combination of the hybrid/sup [2]/-method and the FDTD-method for solution of boundary value problems with electrically large and high-resolution bodies}, series = {IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313) 2002 : San Antonio, TX, USA, 16-21 June}, booktitle = {IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313) 2002 : San Antonio, TX, USA, 16-21 June}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {0-7803-7330-8}, doi = {10.1109/APS.2002.1018209}, pages = {278 -- 281}, year = {2002}, language = {en} } @article{SchubertScholl2011, author = {Schubert, Nicole and Scholl, Ingrid}, title = {Comparing GPU-based multi-volume ray casting techniques}, series = {Computer Science - Research and Development}, volume = {26}, journal = {Computer Science - Research and Development}, number = {12}, publisher = {Springer}, address = {Berlin}, isbn = {1865-2042}, pages = {39 -- 50}, year = {2011}, language = {en} } @article{FerreinHermannsLakemeyer2006, author = {Ferrein, Alexander and Hermanns, Lutz and Lakemeyer, Gerhard}, title = {Comparing Sensor Fusion Techniques for Ball Position Estimation / Ferrein, Alexander ; Hermanns, Lutz ; Lakemeyer, Gerhard}, series = {RoboCup 2005: Robot Soccer World Cup IX}, journal = {RoboCup 2005: Robot Soccer World Cup IX}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-35437-6}, pages = {154 -- 165}, year = {2006}, language = {en} } @inproceedings{LeiseSimonAltherr2020, author = {Leise, Philipp and Simon, Nicolai and Altherr, Lena}, title = {Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_55}, pages = {457 -- 463}, year = {2020}, abstract = {To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables.}, language = {en} } @article{PrumeRoelofsSchmitzetal.2002, author = {Prume, Klaus and Roelofs, Andreas and Schmitz, Thorsten and Reichenberg, Bernd}, title = {Compensation of the Parasitic Capacitance of a Scanning Force Microscope Cantilever Used for Measurements on Ferroelectric Capacitors of Submicron Size by Means of Finite Element Simulations / Prume, Klaus ; Roelofs, Andreas ; Schmitz, Thorsten ; Reichenb}, series = {Japanese Journal of Applied Physics. 41 (2002), H. 11B}, journal = {Japanese Journal of Applied Physics. 41 (2002), H. 11B}, isbn = {0021-4922}, pages = {7198 -- 7201}, year = {2002}, language = {en} } @inproceedings{WolfKoenig2017, author = {Wolf, Martin R. and K{\"o}nig, Johannes Alexander}, title = {Competence Developing Games - Ein {\"U}berblick}, series = {INFORMATIK 2017, Lecture Notes in Informatics (LNI), Gesellschaft f{\"u}r Informatik}, booktitle = {INFORMATIK 2017, Lecture Notes in Informatics (LNI), Gesellschaft f{\"u}r Informatik}, editor = {Eibl, Maximilian and Gaedke, Martin}, organization = {Gesellschaft f{\"u}r Informatik}, isbn = {978-3-88579-669-5}, doi = {10.18420/in2017_32}, pages = {385 -- 391}, year = {2017}, abstract = {Es existieren verschiedenste Arten von Spielen, die versuchen, die Motivation einer Spielsituation in einen ernsten Kontext zu {\"u}berf{\"u}hren. In diesem Artikel wird der {\"U}berbegriff „Competence Developing Games" definiert und anhand von Beispielen erl{\"a}utert. Daf{\"u}r werden Erkennungskriterien vorgestellt, entsprechende Spieltypen erl{\"a}utert und eine Zuordnung durch-gef{\"u}hrt.}, language = {de} } @book{FassbenderGladtzVogler1991, author = {Faßbender, Heinz and Gladtz, Katia and Vogler, Heiko}, title = {Compiler based implementation of syntax directed functional programming}, publisher = {RWTH, Fachgruppe Informatik}, address = {Aachen}, pages = {37 S.}, year = {1991}, language = {en} } @inproceedings{FerreinMeessenLimpertetal.2021, author = {Ferrein, Alexander and Meeßen, Marcus and Limpert, Nicolas and Schiffer, Stefan}, title = {Compiling ROS schooling curricula via contentual taxonomies}, series = {Robotics in Education}, booktitle = {Robotics in Education}, editor = {Lepuschitz, Wilfried}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-67411-3}, doi = {10.1007/978-3-030-67411-3_5}, pages = {49 -- 60}, year = {2021}, abstract = {The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work.}, language = {en} }