@article{ZhubanovaDigelNojimaetal.2007, author = {Zhubanova, Azhar A. and Digel, Ilya and Nojima, H. and Artmann, Gerhard}, title = {The use of bactericidal effects of cluster ions generated by plasma in medical biotechnology}, year = {2007}, abstract = {The most of conventional methods of air purification use the power of a fan to draw in air and pass it through a filter. The problem of bacterial contamination of inner parts of such a type of air conditioners in some cases draws attention towards alternative air-cleaning systems. Some manufacturers offer to use the ozone's bactericidal and deodorizing effects, but the wide spreading of such systems is restricted by the fact that toxic effects of ozone in respect of human beings are well known. In 2000 Sharp Inc. introduced "Plasma Cluster Ions (PCI)" air purification technology, which uses plasma discharge to generate cluster ions (I 0-14 ). This technology has been developed for those customers that are conscious about health and hygiene. In our experiments, we focused on some principal aspects of plasma-generated ions application - time-dependency and irreversibility of bactericidal action, spatial and kinetic characteristics of emitted cluster particles, their chemical targets in the microbial cells.}, subject = {Clusterion}, language = {en} } @inproceedings{ZischankHeidlerKernetal.2002, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Kern, Alexander and Metwally, I. A. and Wiesinger, J. and Seevers, M.}, title = {Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages}, year = {2002}, abstract = {In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between "floor" and "roof" in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived.}, language = {en} } @inproceedings{ZischankHeidlerWiesingeretal.2004, author = {Zischank, Wolfgang J. and Heidler, Fridolin and Wiesinger, J. and Stimper, K. and Kern, Alexander and Seevers, M.}, title = {Magnetic Fields and Induced Voltages inside LPZ 1 Measured at a 1:6 Scale Model Building}, year = {2004}, abstract = {Laborexperimente zu Blitzschutzzonen in Stahlbetongeb{\"a}uden anhand eines Modells im Maßstab 1:6}, language = {en} } @inproceedings{ZischankKernFrentzeletal.2000, author = {Zischank, Wolfgang J. and Kern, Alexander and Frentzel, Ralf and Heidler, Fridolin and Seevers, M.}, title = {Assessment of the lightning transient coupling to control cables interconnecting structures in large industrial facilities and power plants}, year = {2000}, abstract = {Large industrial facilities and power plants often require a huge number fo information and control cables between the differnet structures. These I\&C-cables can be routed in reinforced concrete cable ducts or in isolated buried cable runs. KTA 2206 is the German lightning protection standard for nuclear power plants. During the last several years considerable effort has been made to revise this standard. Despite the well established principles and design guidelines for the construction of the lightning protection system, this standard puts special emphasis on the coupling of transient overvoltages to I\&C-cables.}, language = {en} } @article{OezsoyluAliaziziWagneretal.2024, author = {{\"O}zsoylu, Dua and Aliazizi, Fereshteh and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion}, series = {Biosensors and Bioelectronics}, volume = {261}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (eISSN)}, doi = {10.1016/j.bios.2024.116491}, pages = {11 Seiten}, year = {2024}, abstract = {As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the "real" bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an "imprinting factor" of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D).}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} }