@inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @inproceedings{DachwaldOhndorfSpurmannetal.2009, author = {Dachwald, Bernd and Ohndorf, Andreas and Spurmann, J. and Loeb, H. W. and Schartner, Karl-Heinz and Seboldt, Wolfgang}, title = {Mission design for a SEP mission to saturn}, series = {60th International Astronautical Congress 2009 (IAC 2009)}, booktitle = {60th International Astronautical Congress 2009 (IAC 2009)}, publisher = {Curran Associates, Inc.}, address = {Red Hook, NY}, isbn = {978-1-61567-908-9}, pages = {11 Seiten}, year = {2009}, abstract = {Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system.}, language = {en} } @article{Grap2009, author = {Grap, Rolf Dietmar}, title = {Mit Ingenieuren und Betriebswirten gemeinsam zum Industrial Engineer}, series = {Industrial engineering : Fachzeitschrift des REFA-Bundesverbandes. 62 (2009), H. 2}, journal = {Industrial engineering : Fachzeitschrift des REFA-Bundesverbandes. 62 (2009), H. 2}, isbn = {1866-2269}, pages = {10 -- 12}, year = {2009}, language = {de} } @misc{BergBesslerGerlachetal.2009, author = {Berg, Gabriele and Bessler, Cornelius and Gerlach, Jochen and G{\"u}bitz, Georg and Heumann, Sonja and Karl, Wolfgang and Maurer, Karl-Heinz and Remler, Peter and Ribitsch, Doris and Schwab, Helmut and Siegert, Petra and Wieland, Susanne}, title = {Mittel enthaltend Proteasen aus Stenotrophomonas maltophilia [Offenlegungsschrift]}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt / USPTO / WIPO}, address = {M{\"u}nchen / Den Hague / Washington / Genf}, pages = {1 -- 47}, year = {2009}, language = {de} } @article{BehbahaniTranWalugaetal.2009, author = {Behbahani, Mehdi and Tran, L. and Waluga, C. and Behr, Marek and Oedekoven, B. and Mottaghy, K.}, title = {Model-based Numerical Analysis of Platelet Adhesion, Thrombus Growth and Aggregation for Assist Devices}, series = {The International Journal of Artificial Organs. 32 (2009), H. 7}, journal = {The International Journal of Artificial Organs. 32 (2009), H. 7}, isbn = {0391-3988}, pages = {398 -- 398}, year = {2009}, language = {en} } @article{BehbahaniWalugaStocketal.2009, author = {Behbahani, Mehdi and Waluga, C. and Stock, S. and Mai, A. and Bergmann, B. and Behr, Marek and Tran, L. and Vonderstein, K. and Scheidt, H. and Oedekoven, B. and Mottaghy, K.}, title = {Modelling and Numerical Analysis of Platelet Reactions and Surface Thrombus Growth}, year = {2009}, language = {en} } @article{Huening2009, author = {H{\"u}ning, Felix}, title = {Mosfet ottimizzati per l'automotive}, series = {Selezione di Elettronica (2009)}, journal = {Selezione di Elettronica (2009)}, publisher = {-}, pages = {115 -- 117}, year = {2009}, language = {de} } @book{Grotendorst2009, author = {Grotendorst, Johannes}, title = {Multiscale Simulation Methods in Molecular Sciences : Institute for Advanced Simulation (IAS) ; winter school, 2 - 6 March 2009, Forschungszentrum J{\"u}lich, Germany ; lecture notes}, address = {J{\"u}lich}, isbn = {978-3-9810843-8-2}, pages = {576 S. : graph. Darst.}, year = {2009}, language = {en} } @article{BurkhardtSchwarzPanetal.2009, author = {Burkhardt, Klaus and Schwarz, Sonja and Pan, Chengrui and Stelter, Felix and Kotliar, Konstantin and Eynatten, Maxilian von and Sollinger, Daniel and Lanzl, Ines and Heemann, Uwe and Baumann, Marcus}, title = {Myeloid-related protein 8/14 complex describes microcirculatory alterations in patients with type 2 diabetes and nephropathy}, series = {Cardiovascular Diabetology}, volume = {8}, journal = {Cardiovascular Diabetology}, number = {10}, publisher = {-}, isbn = {1475-2840}, pages = {1 -- 8}, year = {2009}, language = {en} } @article{HeinrichsUttingFrauenrathetal.2009, author = {Heinrichs, Uwe and Utting, Jane F. and Frauenrath, Tobias and Hezel, Fabian and Krombach, Gabriele A. and Hodenius, Michael A. J. and Kozerke, Sebastian and Niendorf, Thoralf}, title = {Myocardial T2 mapping free of distortion using susceptibility-weighted fast spin-echo imaging: A feasibility study at 1.5 T and 3.0 T}, series = {Magnetic Resonance in Medicine}, volume = {62}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22054}, pages = {822 -- 828}, year = {2009}, abstract = {This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T₂ mapping of the heart. First, T₂ maps are presented for oil phantoms without and with respiratory motion emulation (T₂ = (22.1 ± 1.7) ms at 1.5 T and T₂ = (22.65 ± 0.89) ms at 3.0 T). T₂ relaxometry of a ferrofluid revealed relaxivities of R2 = (477.9 ± 17) mM⁻¹s⁻¹ and R2 = (449.6 ± 13) mM⁻¹s⁻¹ for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T₂ values of 29.9 ± 6.6 ms (1.5 T) and 22.3 ± 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T₂-values of 24.0 ± 6.4 ms (1.5 T) and 15.4 ± 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T₂-mapping are considered.}, language = {en} }