@inproceedings{BayerHeschelerArtmannetal.2019, author = {Bayer, Robin and Hescheler, J{\"u}rgen and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Treating arterial hypertension in a cell culture well}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {5 -- 6}, year = {2019}, abstract = {Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the "Deutsche Bluthochdruck Liga" this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching.}, language = {en} } @inproceedings{BlumAlbannaBenninghausetal.2019, author = {Blum, Yannik and Albanna, Walid and Benninghaus, Anne and Kotliar, Konstantin}, title = {Vasomotion in retinal vessels of patients presenting post hemorrhagic hydrocephalus following subarachnoid hemorrhage}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {38 -- 39}, year = {2019}, abstract = {Clearance of blood components and fluid drainage play a crucial role in subarachnoid hemorrhage (SAH) and post hemorrhagic hydrocephalus (PHH). With the involvement of interstitial fluid (ISF) and cerebrospinal fluid (CSF), two pathways for the clearance of fluid and solutes in the brain are proposed. Starting at the level of capillaries, flow of ISF follows along the basement membranes in the walls of cerebral arteries out of the parenchyma to drain into the lymphatics and CSF [1]-[3]. Conversely, it is shown that CSF enters the parenchyma between glial and pial basement membranes of penetrating arteries [4]-[6]. Nevertheless, the involved structures and the contribution of either flow pathway to fluid balance between the subarachnoid space and interstitial space remains controversial. Low frequency oscillations in vascular tone are referred to as vasomotion and corresponding vasomotion waves are modeled as the driving force for flow of ISF out of the parenchyma [7]. Retinal vessel analysis (RVA) allows non-invasive measurement of retinal vessel vasomotion with respect to diameter changes [8]. Thus, the aim of the study is to investigate vasomotion in RVA signals of SAH and PHH patients.}, language = {en} } @article{Stulpe2019, author = {Stulpe, Werner}, title = {Aspects of the Quantum-Classical Connection Based on Statistical Maps}, series = {Foundations of Physics}, volume = {49}, journal = {Foundations of Physics}, number = {6}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/s10701-019-00269-9}, pages = {677 -- 692}, year = {2019}, language = {en} } @article{PoghossianGeisslerSchoening2019, author = {Poghossian, Arshak and Geissler, Hanno and Sch{\"o}ning, Michael Josef}, title = {Rapid methods and sensors for milk quality monitoring and spoilage detection}, series = {Biosensors and Bioelectronics}, volume = {140}, journal = {Biosensors and Bioelectronics}, number = {Article 111272}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.040}, year = {2019}, language = {en} } @article{VoegeleRuebbelkeGovorukhaetal.2019, author = {V{\"o}gele, Stefan and R{\"u}bbelke, Dirk and Govorukha, Kristina and Grajewski, Matthias}, title = {Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany}, series = {Climatic Change}, journal = {Climatic Change}, publisher = {Springer}, address = {Berlin}, issn = {0165-0009}, doi = {10.1007/s10584-019-02366-0}, pages = {1 -- 16}, year = {2019}, language = {en} } @article{LeschingerBeschAydinetal.2019, author = {Leschinger, Tim and Besch, Katharina and Aydin, Cansu and Staat, Manfred and Scaal, Martin and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Irreparable rotator cuff tears: a biomechanical comparison of superior capsuloligamentous complex reconstruction techniques and an interposition graft technique}, series = {The Orthopaedic Journal of Sports Medicine}, volume = {7}, journal = {The Orthopaedic Journal of Sports Medicine}, number = {8}, doi = {10.1177/2325967119864590}, pages = {1 -- 5}, year = {2019}, language = {en} } @phdthesis{Tran2019, author = {Tran, Ngoc Trinh}, title = {Limit and Shakedown analysis of structures under stochastic conditions}, publisher = {Technische Universit{\"a}t Braunschweig}, address = {Braunschweig}, doi = {10.24355/dbbs.084-201902121135-0}, pages = {166 S.}, year = {2019}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{AchtsnichtNeuendorfFassbenderetal.2019, author = {Achtsnicht, Stefan and Neuendorf, Christian and Faßbender, Tobias and N{\"o}lke, Greta and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection}, series = {Plos One}, volume = {14}, journal = {Plos One}, number = {7}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219356}, pages = {e0219356}, year = {2019}, abstract = {Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin's B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml.}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @inproceedings{ZingsheimGrimmerOrtneretal.2019, author = {Zingsheim, Jonas and Grimmer, Timo and Ortner, Marion and Schmaderer, Christoph and Hauser, Christine and Kotliar, Konstantin}, title = {Recognition of subjects with mild cognitive impairment (MCI) by the use of retinal arterial vessels.}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {36 -- 37}, year = {2019}, language = {en} } @book{StaatErni2019, author = {Staat, Manfred and Erni, Daniel}, title = {Symposium Proceedings; 3rd YRA MedTech Symposium 2019: May 24 / 2019 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {49 Seiten}, year = {2019}, language = {en} } @article{JungMuellerStaat2018, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Wind and fairness in ski jumping: A computer modelling analysis}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {75}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.05.001}, pages = {147 -- 153}, year = {2018}, abstract = {Wind is closely associated with the discussion of fairness in ski jumping. To counter-act its influence on the jump length, the International Ski Federation (FIS) has introduced a wind compensation approach. We applied three differently accurate computer models of the flight phase with wind (M1, M2, and M3) to study the jump length effects of various wind scenarios. The previously used model M1 is accurate for wind blowing in direction of the flight path, but inaccuracies are to be expected for wind directions deviating from the tangent to the flight path. M2 considers the change of airflow direction, but it does not consider the associated change in the angle of attack of the skis which additionally modifies drag and lift area time functions. M3 predicts the length effect for all wind directions within the plane of the flight trajectory without any mathematical simplification. Prediction errors of M3 are determined only by the quality of the input data: wind velocity, drag and lift area functions, take-off velocity, and weight. For comparing the three models, drag and lift area functions of an optimized reference jump were used. Results obtained with M2, which is much easier to handle than M3, did not deviate noticeably when compared to predictions of the reference model M3. Therefore, we suggest to use M2 in future applications. A comparison of M2 predictions with the FIS wind compensation system showed substantial discrepancies, for instance: in the first flight phase, tailwind can increase jump length, and headwind can decrease it; this is opposite of what had been anticipated before and is not considered in the current wind compensation system in ski jumping.}, language = {en} } @article{JungStaatMueller2018, author = {Jung, Alexander and Staat, Manfred and M{\"u}ller, Wolfram}, title = {Corrigendum to "Flight style optimization in ski jumping on normal, large, and ski flying hills" [J. Biomech 47 (2014) 716-722]}, series = {Journals of Biomechanics}, journal = {Journals of Biomechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2018.02.001}, pages = {313}, year = {2018}, language = {en} } @article{BhattaraiJabbariAndingetal.2018, author = {Bhattarai, Aroj and Jabbari, Medisa and Anding, Ralf and Staat, Manfred}, title = {Surgical treatment of vaginal vault prolapse using different prosthetic mesh implants: a finite element analysis}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0115}, pages = {331 -- 342}, year = {2018}, abstract = {Particularly multiparous elderly women may suffer from vaginal vault prolapse after hysterectomy due to weak support from lax apical ligaments. A decreased amount of estrogen and progesterone in older age is assumed to remodel the collagen thereby reducing tissue stiffness. Sacrocolpopexy is either performed as open or laparoscopic surgery using prosthetic mesh implants to substitute lax ligaments. Y-shaped mesh models (DynaMesh, Gynemesh, and Ultrapro) are implanted in a 3D female pelvic floor finite element model in the extraperitoneal space from the vaginal cuff to the first sacral (S1) bone below promontory. Numerical simulations are conducted during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues are modeled as incompressible, isotropic hyperelastic materials whereas the meshes are modeled either as orthotropic linear elastic or as isotropic hyperlastic materials. The positions of the vaginal cuff and the bladder base are calculated from the pubococcygeal line for female pelvic floor at rest, for prolapse and after repair using the three meshes. Due to mesh mechanics and mesh pore deformation along the loaded direction, the DynaMesh with regular rectangular mesh pores is found to provide better mechanical support to the organs than the Gynemesh and the Ultrapro with irregular hexagonal mesh pores. Insbesondere {\"a}ltere, mehrgeb{\"a}hrende Frauen leiden h{\"a}ufiger an einem Scheidenvorfall nach einer Hysterektomie aufgrund der schwachen Unterst{\"u}tzung durch laxe apikale B{\"a}nder. Es wird angenommen, dass eine verringerte Menge an {\"O}strogen und Progesteron im h{\"o}heren Alter das Kollagen umformt, wodurch die Gewebesteifigkeit reduziert wird. Die Sakrokolpopexie ist eine offene oder laparoskopische Operation, die mit prothetischen Netzimplantaten durchgef{\"u}hrt wird, um laxe B{\"a}nder zu ersetzen. Y-f{\"o}rmige Netzmodelle (DynaMesh, Gynemesh und Ultrapro) werden in einem 3D-Modell des weiblichen Beckenbodens im extraperitonealen Raum vom Vaginalstumpf bis zum Promontorium implantiert. Numerische Simulationen werden w{\"a}hrend des Valsalva-Man{\"o}vers mit geschw{\"a}chtem Gewebe durchgef{\"u}hrt, das durch eine reduzierte Gewebesteifigkeit modelliert wird. Die Gewebe werden als inkompressible, isotrop hyperelastische Materialien modelliert, w{\"a}hrend die Netze entweder als orthotrope linear elastische oder als isotrope hyperlastische Materialien modelliert werden. Die Positionen des Vaginalstumpfs, der Blase und der Harnr{\"o}hrenachse werden anhand der Pubococcygeallinie aus der Ruhelage, f{\"u}r den Prolaps und nach der Reparatur unter Verwendung der drei Netze berechnet. Aufgrund der Netzmechanik und der Netzporenverformung bietet das DynaMesh mit regelm{\"a}ßigen rechteckigen Netzporen eine bessere mechanische Unterst{\"u}tzung und eine Neupositionierung des Scheidengew{\"o}lbes, der Blase und der Urethraachse als Gynemesh und Ultrapro mit unregelm{\"a}ßigen hexagonalen Netzporen.}, language = {en} } @article{BirgelLeschingerWegmannetal.2018, author = {Birgel, Stefan and Leschinger, Tim and Wegmann, Kilian and Staat, Manfred}, title = {Calculation of muscle forces and joint reaction loads in the shoulder area via an OpenSim based computer model}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {2196-7113}, doi = {10.1515/teme-2017-0114}, pages = {321 -- 330}, year = {2018}, abstract = {Using the OpenSim software and verified anatomical data, a computer model for the calculation of biomechanical parameters is developed and used to determine the effect of a reattachment of the Supraspinatus muscle with a medial displacement of the muscle attachment point, which may be necessary for a rupture of the supraspinatus tendon. The results include the influence of the operation on basic biomechanical parameters such as the lever arm, as well as the calculated the muscle activations for the supraspinatus and deltoid. In addition, the influence on joint stability is examined by an analysis of the joint reaction force. The study provides a detailed description of the used model, as well as medical findings to a reattachment of the supraspinatus. Mit der Software OpenSim und {\"u}berpr{\"u}ften anatomischen Daten wird ein Computermodell zur Berechnung von biomechanischen Parametern entwickelt und genutzt, um den Effekt einer Refixierung des Supraspinatusmuskels mit einer medialen Verschiebung des Muskelansatzpunktes zu ermitteln, wie sie unter anderem nach einem Riss der Supraspinatussehne notwendig sein kann. Die Ergebnisse umfassen hierbei den Einfluss der Operation auf grundlegende biomechanische Parameter wie den Hebelarm sowie die berechneten Muskelaktivierungen f{\"u}r den Supraspinatus und Deltoideus. Zus{\"a}tzlich wird der Einfluss auf die Gelenkstabilit{\"a}t betrachtet und durch eine Analyse der Gelenkreaktionskraft untersucht. Die Studie bietet eine detaillierte Beschreibung des genutzten Modells, sowie medizinische Erkenntnisse zu einer Refixierung des Supraspinatus.}, language = {en} } @book{ArtmannTemizArtmannZhubanovaetal.2018, author = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, title = {Biological, physical and technical basics of cell engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7903-0}, pages = {xxiv, 481 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @inproceedings{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Pectopexy to repair vaginal vault prolapse: a finite element approach}, series = {Proceedings CMBBE 2018}, booktitle = {Proceedings CMBBE 2018}, editor = {Fernandes, P.R. and Tavares, J. M.}, year = {2018}, abstract = {The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient's anatomy and the surgeon's preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions}, series = {Computational and Mathematical Methods in Medicine}, volume = {2018}, journal = {Computational and Mathematical Methods in Medicine}, number = {Article ID 9518076}, publisher = {Hindawi}, address = {New York, NY}, issn = {1748-6718}, doi = {10.1155/2018/9518076}, pages = {1 -- 16}, year = {2018}, abstract = {After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5\%), adipose tissue (85\%), and smooth muscle (5\%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females.}, language = {en} } @incollection{DigelAkimbekovKistaubayevaetal.2018, author = {Digel, Ilya and Akimbekov, Nuraly S. and Kistaubayeva, Aida and Zhubanova, Azhar A.}, title = {Microbial Sampling from Dry Surfaces: Current Challenges and Solutions}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_19}, pages = {421 -- 456}, year = {2018}, abstract = {Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms' recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling.}, language = {en} } @article{DigelWehlitzKayseretal.2018, author = {Digel, Ilya and Wehlitz, V. and Kayser, Peter and Figiel-Lange, A. and Bassam, R. and Rundstedt, F. von}, title = {Suspension depletion approach for exemption of infected Solanum jasminoides cells from pospiviroids}, series = {Plant Pathology}, volume = {67}, journal = {Plant Pathology}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1365-3059}, doi = {10.1111/ppa.12750}, pages = {358 -- 365}, year = {2018}, abstract = {Despite numerous studies, viroid elimination from infected plants remains a very challenging task. This study introduces for the first time a novel 'suspension depletion' approach for exemption of Solanum jasminoides plants from viroids. The proposed method implies initial establishment of suspension cultures of the infected plant cells. The suspended cells were then physically treated (mild thermotherapy, 33 °C), which presumably delayed the replication of the viroid. The viroid concentration in the treated biomass was monitored weekly using pospiviroid-specific PCR. After 10-12 weeks of continuous treatment, a sufficient decrease in viroid concentration was observed such that the infection became undetectable by PCR. The treated single cells then gave rise to microcolonies on a solid culture medium and the obtained viroid-negative clones were further promoted to regenerate into viroid-free plants. Three years of accumulated experimental data suggests feasibility, broad applicability, and good efficacy of the proposed approach.}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide}, series = {Nanomaterials}, volume = {8}, journal = {Nanomaterials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano8040262}, pages = {Artikel 262}, year = {2018}, abstract = {In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst.}, language = {en} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} } @article{DantismRoehlenWagneretal.2018, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800058}, pages = {Article number 1800058}, year = {2018}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron-hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode.}, language = {en} } @inproceedings{SchreiberKraftZuendorf2018, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {NLP Lean Programming Framework: Developing NLP Applications More Effectively}, series = {Proceedings of NAACL-HLT 2018: Demonstrations, New Orleans, Louisiana, June 2 - 4, 2018}, booktitle = {Proceedings of NAACL-HLT 2018: Demonstrations, New Orleans, Louisiana, June 2 - 4, 2018}, doi = {10.18653/v1/N18-5001 }, pages = {5 Seiten}, year = {2018}, abstract = {This paper presents NLP Lean Programming framework (NLPf), a new framework for creating custom natural language processing (NLP) models and pipelines by utilizing common software development build systems. This approach allows developers to train and integrate domain-specific NLP pipelines into their applications seamlessly. Additionally, NLPf provides an annotation tool which improves the annotation process significantly by providing a well-designed GUI and sophisticated way of using input devices. Due to NLPf's properties developers and domain experts are able to build domain-specific NLP applications more efficiently. NLPf is Opensource software and available at https:// gitlab.com/schrieveslaach/NLPf.}, language = {en} } @article{VahidpourOberlaenderSchoening2018, author = {Vahidpour, Farnoosh and Oberl{\"a}nder, Jan and Sch{\"o}ning, Michael Josef}, title = {Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes}, series = {Phys. Status Solidi A}, volume = {215}, journal = {Phys. Status Solidi A}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/pssa.201800044}, pages = {Artikel 1800044}, year = {2018}, abstract = {In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7\% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/\% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization.}, language = {en} } @article{EngelmannRoethEberbecketal.2018, author = {Engelmann, Ulrich M. and Roeth, Anjali A.J. and Eberbeck, Dietmar and Buhl, Eva Miriam and Neumann, Ulf Peter and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-018-31553-9}, pages = {Article number 13210}, year = {2018}, abstract = {Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95\% was achieved by depositing an intracellular total thermal energy with about 50\% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86\% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65\% after MNP were internalized inside cells.}, language = {en} } @article{EngelmannBuhlDraacketal.2018, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Draack, Sebastian and Viereck, Thilo and Frank, and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications}, series = {IEEE Magnetic Letters}, volume = {9}, journal = {IEEE Magnetic Letters}, number = {Article number 8519617}, publisher = {IEEE}, address = {New York, NY}, issn = {1949-307X}, doi = {10.1109/LMAG.2018.2879034}, year = {2018}, abstract = {Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23\% for agglomerated MNP in suspension and a decrease by up to 28\% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy.}, language = {en} } @article{QuittmannMeskemperAbeletal.2018, author = {Quittmann, Oliver J. and Meskemper, Joshua and Abel, Thomas and Albracht, Kirsten and Foitschik, Tina and Rojas-Vega, Sandra and Str{\"u}der, Heiko K.}, title = {Kinematics and kinetics of handcycling propulsion at increasing workloads in able-bodied subjects}, series = {Sports Engineereing}, volume = {21}, journal = {Sports Engineereing}, number = {21}, publisher = {Springer Nature}, address = {Cham}, issn = {1460-2687}, doi = {10.1007/s12283-018-0269-y}, pages = {283 -- 294}, year = {2018}, abstract = {In Paralympic sports, biomechanical optimisation of movements and equipment seems to be promising for improving performance. In handcycling, information about the biomechanics of this sport is mainly provided by case studies. The aim of the current study was (1) to examine changes in handcycling propulsion kinematics and kinetics due to increasing workloads and (2) identify parameters that are associated with peak aerobic performance. Twelve non-disabled male competitive triathletes without handcycling experience voluntarily participated in the study. They performed an initial familiarisation protocol and incremental step test until exhaustion in a recumbent racing handcycle that was attached to an ergometer. During the incremental test, tangential crank kinetics, 3D joint kinematics, blood lactate and ratings of perceived exertion (local and global) were identified. As a performance criterion, the maximal power output during the step test (Pmax) was calculated and correlated with biomechanical parameters. For higher workloads, an increase in crank torque was observed that was even more pronounced in the pull phase than in the push phase. Furthermore, participants showed an increase in shoulder internal rotation and abduction and a decrease in elbow flexion and retroversion. These changes were negatively correlated with performance. At high workloads, it seems that power output is more limited by the transition from pull to push phase than at low workloads. It is suggested that successful athletes demonstrate small alterations of their kinematic profile due to increasing workloads. Future studies should replicate and expand the test spectrum (sprint and continuous loads) as well as use methods like surface electromyography (sEMG) with elite handcyclists.}, language = {de} } @article{ConzenAlbannaWeissetal.2018, author = {Conzen, Catharina and Albanna, Walid and Weiss, Miriam and K{\"u}rten, David and Vilser, Walthard and Kotliar, Konstantin and Z{\"a}ske, Charlotte and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Vasoconstriction and Impairment of Neurovascular Coupling after Subarachnoid Hemorrhage: a Descriptive Analysis of Retinal Changes}, series = {Translational Stroke Research}, journal = {Translational Stroke Research}, number = {9}, publisher = {Springer Nature}, address = {Cham}, issn = {1868-601X}, doi = {10.1007/s12975-017-0585-8}, pages = {284 -- 293}, year = {2018}, abstract = {Impaired cerebral autoregulation and neurovascular coupling (NVC) contribute to delayed cerebral ischemia after subarachnoid hemorrhage (SAH). Retinal vessel analysis (RVA) allows non-invasive assessment of vessel dimension and NVC hereby demonstrating a predictive value in the context of various neurovascular diseases. Using RVA as a translational approach, we aimed to assess the retinal vessels in patients with SAH. RVA was performed prospectively in 24 patients with acute SAH (group A: day 5-14), in 11 patients 3 months after ictus (group B: day 90 ± 35), and in 35 age-matched healthy controls (group C). Data was acquired using a Retinal Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and NVC using flicker-light excitation. Diameter of retinal vessels—central retinal arteriolar and venular equivalent—was significantly reduced in the acute phase (p < 0.001) with gradual improvement in group B (p < 0.05). Arterial NVC of group A was significantly impaired with diminished dilatation (p < 0.001) and reduced area under the curve (p < 0.01) when compared to group C. Group B showed persistent prolonged latency of arterial dilation (p < 0.05). Venous NVC was significantly delayed after SAH compared to group C (A p < 0.001; B p < 0.05). To our knowledge, this is the first clinical study to document retinal vasoconstriction and impairment of NVC in patients with SAH. Using non-invasive RVA as a translational approach, characteristic patterns of compromise were detected for the arterial and venous compartment of the neurovascular unit in a time-dependent fashion. Recruitment will continue to facilitate a correlation analysis with clinical course and outcome.}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @article{LauraDrechslerErdtetal.2018, author = {Laura, C.O. and Drechsler, Klaus and Erdt, M. and Wesarg, S. and Bale, R.}, title = {Intervention assessment tool for primary tumors in the liver}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0081}, pages = {337 -- 340}, year = {2018}, abstract = {After a liver tumor intervention the medical doctor has to compare both pre and postoperative CT acquisitions to ensure that all carcinogenic cells are destroyed. A correct assessment of the intervention is of vital importance, since it will reduce the probability of tumor recurrence. Some methods have been proposed to support the medical doctors during the assessment process, however, all of them focus on secondary tumors. In this paper a tool is presented that enables the outcome validation for both primary and secondary tumors. Therefore, a multiphase registration (preoperative arterial and portal phases) followed by a registration between the pre and postoperative CT images is carried out. The first registration is in charge of the primary tumors that are only visible in the arterial phase. The secondary tumors will be incorporated in the second registration step. Finally, the part of the tumor that was not covered by the necrosis is quantified and visualized. The method has been tested in 9 patients, with an average registration error of 1.41 mm.}, language = {en} } @article{HeinkeKnickerAlbracht2018, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Evaluation of passively induced shoulder stretch reflex using an isokinetic dynamometer in male overhead athletes}, series = {Isokinetics and Exercise Science}, volume = {26}, journal = {Isokinetics and Exercise Science}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1878-5913}, doi = {10.3233/IES-184111}, pages = {265 -- 274}, year = {2018}, abstract = {BACKGROUND: Muscle stretch reflexes are widely considered to beneficially influence joint stability and power generation in the lower limbs. While in the upper limbs and especially in the muscles surrounding the shoulder joint such evidence is lacking. OBJECTIVE: To quantify the electromyographical response in the muscles crossing the shoulder of specifically trained overhead athletes to an anterior perturbation force. METHODS: Twenty healthy male participants performed six sets of different external shoulder rotation stretches on an isokinetic dynamometer over a range of amplitudes and muscle pre-activation moment levels. All stretches were applied with a dynamometer acceleration of 10,000∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexes were not observed in all experimental conditions. The reflex latencies revealed a significant muscle main effect (F (2,228) = 99.31, p< 0.001; η2= 0.466; f= 0.934) and a pre-activation main effect (F (1,228) = 142.21, p< 0.001; η2= 0.384; f= 1.418). The stretch reflex amplitude yielded a significant pre-activation main effect (F (1,222) = 470.373, p< 0.001; η2= 0.679; f= 1.454). CONCLUSION: Short latency muscle reflexes showed a tendency to an anterior to posterior muscle recruitment whereby the main internal rotator muscles of the shoulder revealed the most consistent results.}, language = {en} } @article{KotliarLanzl2018, author = {Kotliar, Konstantin and Lanzl, Ines}, title = {Vaskul{\"a}re Biomarker der retinalen Gef{\"a}βanalyse}, series = {Klinische Monatsbl{\"a}tter fur Augenheilkunde}, volume = {235}, journal = {Klinische Monatsbl{\"a}tter fur Augenheilkunde}, number = {12}, publisher = {Thieme}, address = {Stuttgart}, issn = {0023-2165}, doi = {10.1055/a-0774-7987}, pages = {1352 -- 1359}, year = {2018}, abstract = {Mit modernen nicht invasiven bildgebenden Verfahren lassen sich anhand der Fundusfotografie bzw. der optischen Verfilmung Aspekte der funktionellen und strukturellen retinalen Gef{\"a}ßver{\"a}nderungen objektiv untersuchen. Der Zustand und das Verhalten retinaler Gef{\"a}ße beeinflussen im pr{\"a}-, post- und kapillaren Bereich den Blutfluss und str{\"o}mungsbedingte Stoffwechselverh{\"a}ltnisse passiv und aktiv {\"u}ber den Gef{\"a}ßdurchmesser. Retinale Gef{\"a}ße gleichen von Aufbau und Funktion den zerebralen Gef{\"a}ßen und spiegeln den Zustand der Mikrozirkulation wider. Mithilfe von aus den Gef{\"a}ßweiten berechneten Biomarkern soll eine Aussage {\"u}ber die Prognose von systemischen vaskul{\"a}r bedingten Erkrankungen getroffen werden. Die statische retinale Gef{\"a}ßanalyse befasst sich mit der Untersuchung des Zustandes der pr{\"a}- und postkapillaren Gef{\"a}ßdurchmesser der retinalen Mikrozirkulation anhand einer optischen Fundusaufnahme. Bei der dynamischen retinalen Gef{\"a}ßanalyse wird der L{\"a}ngsschnitt eines retinalen Gef{\"a}ßes nicht invasiv funktionell und strukturell {\"u}ber einen Zeitraum vor, w{\"a}hrend und nach einer spezifischen vaskul{\"a}ren Stimulation untersucht. Die genaue Methodologie der Auswertung und die Bezeichnung der Parameter variieren bei unterschiedlichen Ans{\"a}tzen. Mittels retinaler Gef{\"a}ßanalyse wurden bislang mehrere klinische Querschnitts- und Interventionsstudien in der Augenheilkunde und anderen Fachgebieten, inkl. Kardiologie, Neurologie, Neurochirurgie, Nephrologie, Gyn{\"a}kologie, Sportmedizin, Diabetologie, Hypertensiologie usw. durchgef{\"u}hrt. Mit der statischen retinalen Gef{\"a}ßanalyse steht eine kosteng{\"u}nstige, reproduzierbare, nicht invasive Screeningtechnik zur Verf{\"u}gung, um eine prognostische Aussage {\"u}ber die Gef{\"a}ßgesundheit eines individuellen Patienten zu treffen. Die dynamische retinale Gef{\"a}ßanalyse besitzt ein weiteres diagnostisches Anwendungsspektrum als die statische, da sie das Verhalten retinaler Gef{\"a}ße zeitkontinuierlich untersucht. Die Evaluation vaskul{\"a}rer Erkrankungen sowie zerebro- bzw. kardiovaskul{\"a}rer Morbidit{\"a}t und Mortalit{\"a}t mittels mehrerer methodologischer Modalit{\"a}ten retinaler Gef{\"a}ßanalyse mit ihren jeweiligen quantitativen Biomarkern bietet eine zukunftstr{\"a}chtige diagnostische Perspektive. Die interdisziplin{\"a}re klinische Anwendung dieser vaskul{\"a}ren Biomarker gewinnt zunehmend an Bedeutung, sowohl in der Augenheilkunde als auch in anderen Fachgebieten.}, language = {de} } @book{Molinnus2018, author = {Molinnus, Denise}, title = {Integration of biomolecular logic principles with electronic transducers on a chip}, publisher = {Philipps-Universit{\"a}t / Fachbereich Pharmazie}, address = {Marburg/Lahn}, year = {2018}, language = {de} } @inproceedings{KromeSander2018, author = {Krome, Cornelia and Sander, Volker}, title = {Time series analysis with apache spark and its applications to energy informatics}, series = {Proceedings of the 7th DACH+ Conference on Energy Informatics}, booktitle = {Proceedings of the 7th DACH+ Conference on Energy Informatics}, doi = {10.1186/s42162-018-0043-1}, year = {2018}, abstract = {In energy economy forecasts of different time series are rudimentary. In this study, a prediction for the German day-ahead spot market is created with Apache Spark and R. It is just an example for many different applications in virtual power plant environments. Other examples of use as intraday price processes, load processes of machines or electric vehicles, real time energy loads of photovoltaic systems and many more time series need to be analysed and predicted. This work gives a short introduction into the project where this study is settled. It describes the time series methods that are used in energy industry for forecasts shortly. As programming technique Apache Spark, which is a strong cluster computing technology, is utilised. Today, single time series can be predicted. The focus of this work is on developing a method to parallel forecasting, to process multiple time series simultaneously with R and Apache Spark.}, language = {en} } @article{FigueroaMirandaFengShiuetal.2018, author = {Figueroa-Miranda, Gabriela and Feng, Lingyan and Shiu, Simon Chi-Chin and Dirkzwager, Roderick Marshall and Cheung, Yee-Wai and Tanner, Julian Alexander and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, Andreas and Mayer, Dirk}, title = {Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability}, series = {Sensor and Actuators B: Chemical}, volume = {255}, journal = {Sensor and Actuators B: Chemical}, number = {P1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.07.117}, pages = {235 -- 243}, year = {2018}, abstract = {Malaria infection remains a significant risk for much of the population of tropical and subtropical areas, particularly in developing countries. Therefore, it is of high importance to develop sensitive, accurate and inexpensive malaria diagnosis tests. Here, we present a novel aptamer-based electrochemical biosensor (aptasensor) for malaria detection by impedance spectroscopy, through the specific recognition between a highly discriminatory DNA aptamer and its target Plasmodium falciparum lactate dehydrogenase (PfLDH). Interestingly, due to the isoelectric point (pI) of PfLDH, the aptasensor response showed an adjustable detection range based on the different protein net-charge at variable pH environments. The specific aptamer recognition allows sensitive protein detection with an expanded detection range and a low detection limit, as well as a high specificity for PfLDH compared to analogous proteins. The specific feasibility of the aptasensor is further demonstrated by detection of the target PfLDH in human serum. Furthermore, the aptasensor can be easily regenerated and thus applied for multiple usages. The robustness, sensitivity, and reusability of the presented aptasensor make it a promising candidate for point-of-care diagnostic systems.}, language = {en} } @article{MiyamotoSekiSutoetal.2018, author = {Miyamoto, Koichiro and Seki, Kosuke and Suto, Takeyuki and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers}, series = {Sensor and Actuators B: Chemical}, volume = {273}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.07.016}, pages = {1328 -- 1333}, year = {2018}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration.}, language = {en} } @article{LapitanRogatkinPersheyevetal.2018, author = {Lapitan, Denis G. and Rogatkin, Dmitrii A. and Persheyev, Sydulla K. and Kotliar, Konstantin}, title = {False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter}, series = {Biomedizinische Technik}, volume = {63}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2017-0060}, pages = {439 -- 444}, year = {2018}, abstract = {Noise in the differential two-channel scheme of a classic laser Doppler flowmetry (LDF) instrument was studied. Formation of false spectral components in the output signal due to beating of electrical signals in the differential amplifier was found out. The improved block-diagram of the flowmeter was developed allowing to reduce the noise.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{RodriguesMoraisNordietal.2018, author = {Rodrigues, Raul T. and Morais, Paulo V. and Nordi, Cristina S. F. and Sch{\"o}ning, Michael Josef and Siqueira Jr., Jos{\´e} R. and Caseli, Luciano}, title = {Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films}, series = {Langmuir}, volume = {34}, journal = {Langmuir}, number = {9}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-5827}, doi = {10.1021/acs.langmuir.7b04317}, pages = {3082 -- 3093}, year = {2018}, abstract = {Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.}, language = {en} } @article{AlbannaKotliarLuekeetal.2018, author = {Albanna, Walid and Kotliar, Konstantin and L{\"u}ke, Jan Niklas and Alpdogan, Serdar and Conzen, Catharina and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Vilser, Walthard and Schneider, Toni and Schubert, Gerrit Alexander}, title = {Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis}, series = {Plos one}, volume = {13}, journal = {Plos one}, number = {10}, publisher = {PLOS}, address = {San Francisco}, doi = {10.1371/journal.pone.0204689}, pages = {e0204689}, year = {2018}, abstract = {Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals.}, language = {en} } @article{BalakirskiKotliarPaulyetal.2018, author = {Balakirski, Galina and Kotliar, Konstantin and Pauly, Karolin J. and Krings, Laura K. and R{\"u}bben, Albert and Baron, Jens M. and Schmitt, Laurenz}, title = {Surgical Site Infections After Dermatologic Surgery in Immunocompromised Patients: A Single-Center Experience}, series = {Dermatologic Surgery}, journal = {Dermatologic Surgery}, number = {44 (12)}, publisher = {Wolters Kluwer}, doi = {10.1097/DSS.0000000000001615}, pages = {1525 -- 1536}, year = {2018}, abstract = {BACKGROUND Immunosuppression is often considered as an indication for antibiotic prophylaxis to prevent surgical site infections (SSI) while performing skin surgery. However, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. PATIENTS AND METHODS All patients of the Department of Dermatology and Allergology at the University Hospital of RWTH Aachen in Aachen, Germany, who underwent hospitalization for a dermatologic surgery between June 2016 and January 2017 (6 months), were followed up after surgery until completion of the wound healing process. The follow-up addressed the occurrence of SSI and the need for systemic antibiotics after the operative procedure. Immunocompromised patients were compared with immunocompetent patients. The investigation was conducted as a retrospective analysis of patient records. RESULTS The authors performed 284 dermatologic surgeries in 177 patients. Nineteen percent (54/284) of the skin surgery was performed on immunocompromised patients. The most common indications for surgical treatment were nonmelanoma skin cancer and malignant melanomas. Surgical site infections occurred in 6.7\% (19/284) of the cases. In 95\% (18/19), systemic antibiotic treatment was needed. Twenty-one percent of all SSI (4/19) were seen in immunosuppressed patients. CONCLUSION According to the authors' data, immunosuppression does not represent a significant risk factor for SSI after dermatologic surgery. However, larger prospective studies are needed to make specific recommendations on the use of antibiotic prophylaxis while performing skin surgery in these patients. The available data on complications after dermatologic surgery have improved over the past years. Particularly, additional risk factors have been identified for surgical site infections (SSI). Purulent surgical sites, older age, involvement of head, neck, and acral regions, and also the involvement of less experienced surgeons have been reported to increase the risk of the SSI after dermatologic surgeries.1 In general, the incidence of SSI after skin surgery is considered to be low.1,2 However, antibiotics in dermatologic surgeries, especially in the perioperative setting, seem to be overused,3,4 particularly regarding developing antibiotic resistances and side effects. Immunosuppression has been recommended to be taken into consideration as an additional indication for antibiotic prophylaxis to prevent SSI after skin surgery in special cases.5,6 However, these recommendations do not specify the exact dermatologic surgeries, and were not specifically developed for dermatologic surgery patients and treatments, but adopted from other surgical fields.6 According to the survey conducted on American College of Mohs Surgery members in 2012, 13\% to 29\% of the surgeons administered antibiotic prophylaxis to immunocompromised patients to prevent SSI while performing dermatologic surgery on noninfected skin,3 although this was not recommended by Journal of the American Academy of Dermatology Advisory Statement. Indeed, the data on the risk of developing SSI after dermatologic surgery in immunosuppressed patients are limited. However, it is possible that due to the insufficient evidence on the risk of SSI occurrence in this patient group, dermatologic surgeons tend to overuse perioperative antibiotic prophylaxis. To make specific recommendations on the use of antibiotic prophylaxis in immunosuppressed patients in the field of skin surgery, more information about the incidence of SSI after dermatologic surgery in these patients is needed. The aim of this study was to fill this data gap by investigating whether there is an increased risk of SSI after skin surgery in immunocompromised patients compared with immunocompetent patients.}, language = {en} } @article{RittwegerAlbrachtFluecketal.2018, author = {Rittweger, J{\"o}rn and Albracht, Kirsten and Fl{\"u}ck, Martin and Ruoss, Severin and Brocca, Lorenza and Longa, Emanuela and Moriggi, Manuela and Seynnes, Olivier and Di Giulio, Irene and Tenori, Leonardo and Vignoli, Alessia and Capri, Miriam and Gelfi, Cecilia and Luchinat, Claudio and Franceschi, Claudio and Bottinelli, Roberto and Cerretelli, Paolo and Narici, Marco}, title = {Sarcolab pilot study into skeletal muscle's adaptation to longterm spaceflight}, series = {npj Microgravity}, volume = {4}, journal = {npj Microgravity}, number = {1}, publisher = {Nature Portfolio}, issn = {2373-8065}, doi = {10.1038/s41526-018-0052-1}, pages = {1 -- 9}, year = {2018}, language = {en} } @article{ErmolaevNivokovMelnikovaetal.2018, author = {Ermolaev, A.P. and Nivokov, I.A. and Melnikova, L.I. and Kotliar, Konstantin}, title = {Сравнительная характеристика химического состава витреального содержимого кадаверных глаз и глаз с рефрактерной терминальной глаукомой}, series = {Vestnik oftalmologii}, volume = {5}, journal = {Vestnik oftalmologii}, number = {2}, publisher = {Media Sfera}, address = {Moskau}, doi = {10.17116/oftalma2018134051195}, pages = {195 -- 201}, year = {2018}, abstract = {Purpose — to compare the chemical elemental composition of vitreous cavity content taken from cadaveric eyes compared to samples taken from the eyes with terminal stage refractory glaucoma with decompensated intraocular pressure (IOP). Material and methods. The vitreous contents of the eyes from 2 groups were studied. The 1st group included 15 cadaveric eyes; the 2nd group included 15 eyes with refractory glaucoma in the terminal stage of the disease with decompensated IOP in patients with hypertension pain. The vitreal content samples were taken in the course of antiglaucoma surgery aimed at preserving the eye as an organ and involving employment of drainage in the vitreous cavity. The study of virtual contents was carried out on energy dispersive spectrometer Oxford X-Max 50 integrated into scanning electron microscope Zeiss EVO LS10. Results. Increased concentrations of Kalium and Phosphorus were detected in the vitreous content of cadaveric eyes compared with the vitreal content from the eyes with terminal glaucoma with decompensated IOP taken in vivo (K — 0.172/0.093; P — 0.045/0.025 mmol/L). In the vitreous cavity in the eyes with end-stage glaucoma with decompensated IOP, the concentration of Nitrogen was higher in comparison with human cadaver eyes (2.030/1.424 mmol/L). Conclusion. The increased concentrations of Kalium and Phosphorus in the vitreous content of cadaveric eyes is associated with postmortem autolytic processes and with the release of intracellular content in the destruction of cell membranes. The increased Nitrogen concentration in the vitreal contents of the eyes with terminal stage glaucoma with decompensated IOP may be associated with the presence of osmotically active nitrogen-containing compounds in the eyes with increased IOP.}, language = {ru} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2018, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J and Paulsen, G{\o}ran and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R}, title = {Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing}, series = {Frontiers in physiology}, journal = {Frontiers in physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00794}, pages = {11 Seiten}, year = {2018}, abstract = {During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18\%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8\%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21\%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{CiritsisHorbachStaatetal.2018, author = {Ciritsis, Alexander and Horbach, Andreas and Staat, Manfred and Kuhl, Christiane K. and Kraemer, Nils Andreas}, title = {Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo}, series = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, volume = {106}, journal = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, number = {2}, publisher = {Wiley}, address = {New York, NY}, issn = {1552-4981}, doi = {10.1002/jbm.b.33877}, pages = {827 -- 833}, year = {2018}, abstract = {Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4\% for TPU and of 1.2\% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827-833, 2018.}, language = {en} } @inproceedings{TranMatthiesStavroulakisetal.2018, author = {Tran, Ngoc Trinh and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {Direct plastic structural design by chance constrained programming}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {12 Seiten}, year = {2018}, abstract = {We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used.}, language = {en} } @article{KohlerKirschnerHermannsStaatetal.2018, author = {Kohler, Annette and Kirschner-Hermanns, Ruth and Staat, Manfred and Brehmer, Bernhard}, title = {Pathogenese, funktionelle und anatomische Aspekte der weiblichen Belastungsinkontinenz}, series = {Aktuelle Urologie}, volume = {49}, journal = {Aktuelle Urologie}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {1438-8820}, doi = {10.1055/s-0043-120616}, pages = {47 -- 51}, year = {2018}, abstract = {Der vorliegende Artikel fokussiert sich auf die weibliche Belastungsinkontinenz als Insuffizienz der Speicherfunktion der Blase, auch wenn im klinischen Alltag die Harninkontinenz der Frau h{\"a}ufig verschiedene Ursachen hat und insbesondere eine Belastungsinkontinenz im Alter und bei neurologischer Komorbidit{\"a}t nur selten isoliert vorkommt. Das kleine Becken der Frau ist sowohl als Funktions- als auch als strukturelle Einheit zu betrachten. Dabei unterliegen bei der Frau Blase, Harnr{\"o}hre, Geb{\"a}rmutter und Enddarm sowie die muskul{\"a}ren und ligament{\"o}sen Strukturen des kleinen Beckens durch Fertilit{\"a}tsphase, m{\"o}gliche Schwangerschaften, Geburten und Menopausen-Phase, {\"u}ber das „normale Altern" hinaus, gravierenden Ver{\"a}nderungen. This article focuses on female stress incontinence in the form of pelvic floor dysfunction and urethral sphincter deficiency, although isolated stress incontinence accounts for less than half of all incontinence cases. Especially in women of old age and those with neurological comorbidities, the causes of incontinence are mostly multifactorial. Also it has to be considered that the female bladder, urethra, uterus and rectum as well as the muscular and ligamentous structures of the female pelvis minor are affected by phases of fertility, possible pregnancies, births and menopause in addition to the normal ageing process.}, language = {de} } @inproceedings{JungFrotscherStaat2018, author = {Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample.}, language = {en} } @inproceedings{KahmannUschokWegmannetal.2018, author = {Kahmann, Stephanie Lucina and Uschok, Stephan and Wegmann, Kilian and M{\"u}ller, Lars-P. and Staat, Manfred}, title = {Biomechanical multibody model with refined kinematics of the elbow}, series = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, booktitle = {6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK}, pages = {11 Seiten}, year = {2018}, abstract = {The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent.}, language = {en} } @incollection{BhattaraiFrotscherStaat2018, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Computational Analysis of Pelvic Floor Dysfunction}, series = {Women's Health and Biomechanics}, booktitle = {Women's Health and Biomechanics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-71574-2}, doi = {10.1007/978-3-319-71574-2_17}, pages = {217 -- 230}, year = {2018}, abstract = {Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.}, language = {en} } @incollection{FrotscherStaat2018, author = {Frotscher, Ralf and Staat, Manfred}, title = {Towards Patient-Specific Computational Modeling of hiPS-Derived Cardiomyocyte Function and Drug Action}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_10}, pages = {233 -- 250}, year = {2018}, abstract = {Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) today are widely used for the investigation of normal electromechanical cardiac function, of cardiac medication and of mutations. Computational models are thus established that simulate the behavior of this kind of cells. This section first motivates the modeling of hiPS-CM and then presents and discusses several modeling approaches of microscopic and macroscopic constituents of human-induced pluripotent stem cell-derived and mature human cardiac tissue. The focus is led on the mapping of the computational results one can achieve with these models onto mature human cardiomyocyte models, the latter being the real matter of interest. Model adaptivity is the key feature that is discussed because it opens the way for modeling various biological effects like biological variability, medication, mutation and phenotypical expression. We compare the computational with experimental results with respect to normal cardiac function and with respect to inotropic and chronotropic drug effects. The section closes with a discussion on the status quo of the specificity of computational models and on what challenges have to be solved to reach patient-specificity.}, language = {en} } @incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @phdthesis{Bhattarai2018, author = {Bhattarai, Aroj}, title = {Constitutive modeling of female pelvic floor dysfunctions and reconstructive surgeries using prosthetic mesh implants}, isbn = {978-3-9818074-8-6}, doi = {10.17185/duepublico/70340}, pages = {192 S.}, year = {2018}, language = {en} } @article{MolinnusHardtKaeveretal.2018, author = {Molinnus, Denise and Hardt, G. and K{\"a}ver, L. and Willenberg, H.S. and Kr{\"o}ger, J.-C. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling}, series = {Sensor and Actuators B: Chemical}, volume = {272}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.05.136}, pages = {21 -- 27}, year = {2018}, abstract = {A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician.}, language = {en} } @incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @article{KochPoghossianSchoeningetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Wege, Christian}, title = {Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors}, series = {Nanotheranostics}, volume = {2}, journal = {Nanotheranostics}, number = {2}, publisher = {Ivyspring}, address = {Sydney}, issn = {2206-7418}, doi = {10.7150/ntno.22114}, pages = {184 -- 196}, year = {2018}, abstract = {The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts.}, language = {en} } @incollection{KochPoghossianWegeetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications}, series = {Virus-Derived Nanoparticles for Advanced Technologies}, booktitle = {Virus-Derived Nanoparticles for Advanced Technologies}, editor = {Wege, Christina}, publisher = {Humana Press}, address = {New York, NY}, isbn = {978-1-4939-7808-3}, doi = {10.1007/978-1-4939-7808-3}, pages = {553 -- 568}, year = {2018}, abstract = {Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance.}, language = {en} } @book{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {xii, 480 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @article{KeutmannStaatLaack2018, author = {Keutmann, Sabine and Staat, Manfred and Laack, Walter van}, title = {Untersuchung der thermischen Auswirkung von therapeutischem Ultraschall}, volume = {7}, number = {10}, publisher = {Deutscher {\"A}rzte-Verl.}, address = {K{\"o}ln}, issn = {2193-5793}, pages = {518 -- 522}, year = {2018}, abstract = {Zusammenfassung: In der Orthop{\"a}die z{\"a}hlt der therapeutische Ultraschall als Mittel zur Pr{\"a}vention und Therapiebegleitung. Er hat mechanische, thermische und physiko-chemische Auswirkungen auf den menschlichen K{\"o}rper. Um mehr Erkenntnisse {\"u}ber die thermischen Auswirkungen zu erlangen, wurden Versuche an einem Hydrogel-Phantom und an Probanden durchgef{\"u}hrt. Dabei entstand eine signifikante Erw{\"a}rmung des Gewebes, welche beim Probandenversuch an der Oberfl{\"a}che und beim Hydrogelversuch in der Tiefe gemessen wurde. Summary: In orthopaedics, therapeutic ultrasound is a tool of prevention and therapy support. It has mechanical, thermal and physico-chemical effects on the human body. Tests with a hydrogel phantom and with human probands have been performed in order to obtain more knowledge about their thermal effects. Both tests measured temperature increases in cell tissue, on the surface with the human proband test and in depth with the hydrogel phantom test.}, language = {de} } @article{HarrisKleefeld2018, author = {Harris, Isaac and Kleefeld, Andreas}, title = {The inverse scattering problem for a conductive boundary condition and transmission eigenvalues}, series = {Applicable Analysis}, volume = {99}, journal = {Applicable Analysis}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2018.1504028}, pages = {508 -- 529}, year = {2018}, abstract = {In this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside-outside duality method can be used to reconstruct the interior conductive eigenvalues.}, language = {en} } @article{BaringhausGaigallThiele2018, author = {Baringhaus, Ludwig and Gaigall, Daniel and Thiele, Jan Philipp}, title = {Statistical inference for L²-distances to uniformity}, series = {Computational Statistics}, volume = {2018}, journal = {Computational Statistics}, number = {33}, publisher = {Springer}, address = {Berlin}, issn = {1613-9658}, doi = {10.1007/s00180-018-0820-0}, pages = {1863 -- 1896}, year = {2018}, abstract = {The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study.}, language = {en} } @article{BronderJessingPoghossianetal.2018, author = {Bronder, Thomas and Jessing, Max P. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {90}, journal = {Analytical Chemistry}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0003-2700}, doi = {10.1021/acs.analchem.8b01807}, pages = {7747 -- 7753}, year = {2018}, abstract = {Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.}, language = {en} } @article{DitzhausGaigall2018, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {A consistent goodness-of-fit test for huge dimensional and functional data}, series = {Journal of Nonparametric Statistics}, volume = {30}, journal = {Journal of Nonparametric Statistics}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1029-0311}, doi = {10.1080/10485252.2018.1486402}, pages = {834 -- 859}, year = {2018}, abstract = {A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cram{\´e}r-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} } @book{Laack2018, author = {Laack, Walter van}, title = {Sterben und Tod aus wissenschaftlicher Sicht - dying and death from a scientific point of view}, publisher = {van Laack GmbH}, address = {Aachen}, isbn = {978-3-936624-41-0}, pages = {44 Seiten}, year = {2018}, language = {de} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @article{SchwabedalSippelBrandtetal.2018, author = {Schwabedal, Justus T. C. and Sippel, Daniel and Brandt, Moritz D. and Bialonski, Stephan}, title = {Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning}, doi = {10.48550/arXiv.1809.08443}, year = {2018}, abstract = {Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven f ield. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifactfree or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.}, language = {en} } @incollection{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Mechanics of soft tissue reactions to textile mesh implants}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_11}, pages = {251 -- 275}, year = {2018}, abstract = {For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment.}, language = {en} } @article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @incollection{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Enzyme und Biosensorik}, series = {Einf{\"u}hrung in die Enzymtechnologie}, booktitle = {Einf{\"u}hrung in die Enzymtechnologie}, publisher = {Springer Spektrum}, address = {Berlin}, isbn = {978-3-662-57619-9}, doi = {10.1007/978-3-662-57619-9_18}, pages = {323 -- 347}, year = {2018}, abstract = {Enzymbasierte Biosensoren finden seit mehr als f{\"u}nf Jahrzehnten einen prosperierenden Wachstumsmarkt und werden zunehmend auch in biotechnologischen Prozessen eingesetzt. In diesem Kapitel werden, ausgehend vom Sensorbegriff und typischen Kenngr{\"o}ßen f{\"u}r Biosensoren (Abschn. 18.1), elektrochemische Enzym-Biosensoren vorgestellt und deren typischen Einsatzgebiete diskutiert (Abschn. 18.2). Ein Blick {\"u}ber den „Tellerrand" hinaus zeigt alternative Transduktorprinzipien (Abschn. 18.3) und f{\"u}hrt abschließend in aktuelle Forschungstrends ein (Abschn. 18.4).}, language = {de} } @article{PoghossianJablonskiKochetal.2018, author = {Poghossian, Arshak and Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Rolka, David and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-effect biosensor using virus particles as scaffolds for enzyme immobilization}, series = {Biosensors and Bioelectronics}, volume = {110}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.03.036}, pages = {168 -- 174}, year = {2018}, abstract = {A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples.}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} } @article{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Computational comparison of different textile implants to correct apical prolapse in females}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, doi = {10.1515/cdbme-2018-0159}, pages = {661 -- 664}, year = {2018}, abstract = {Prosthetic textile implants of different shapes, sizes and polymers are used to correct the apical prolapse after hysterectomy (removal of the uterus). The selection of the implant before or during minimally invasive surgery depends on the patient's anatomical defect, intended function after reconstruction and most importantly the surgeon's preference. Weakness or damage of the supporting tissues during childbirth, menopause or previous pelvic surgeries may put females in higher risk of prolapse. Numerical simulations of reconstructed pelvic floor with weakened tissues and organ supported by textile product models: DynaMesh®-PRS soft, DynaMesh®-PRP soft and DynaMesh®-CESA from FEG Textiletechnik mbH, Germany are compared.}, language = {en} } @article{HorbachStaat2018, author = {Horbach, Andreas and Staat, Manfred}, title = {Optical strain measurement for the modeling of surgical meshes and their porosity}, series = {Current Directions in Biomedical Engineering}, volume = {Band 4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0045}, pages = {181 -- 184}, year = {2018}, abstract = {The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes.}, language = {en} } @inproceedings{RichterBraunsteinStaeudleetal.2018, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, T. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices}, series = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, booktitle = {23rd Annual Congress of the European College of Sport Science, Dublin, Irland}, year = {2018}, language = {en} } @incollection{TranTranMatthiesetal.2017, author = {Tran, N. T. and Tran, Thanh Ngoc and Matthies, M. G. and Stavroulakis, G. E. and Staat, Manfred}, title = {Shakedown Analysis Under Stochastic Uncertainty by Chance Constrained Programming}, series = {Advances in Direct Methods for Materials and Structures}, booktitle = {Advances in Direct Methods for Materials and Structures}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-59810-9}, doi = {10.1007/978-3-319-59810-9_6}, pages = {85 -- 103}, year = {2017}, abstract = {In this paper we propose a stochastic programming method to analyse limit and shakedown of structures under uncertainty condition of strength. Based on the duality theory, the shakedown load multiplier formulated by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier formulated by static theorem. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) with three-node linear triangular elements is used for structural analysis.}, language = {en} } @article{HacklWegmannKahmannetal.2017, author = {Hackl, Michael and Wegmann, Kilian and Kahmann, Stephanie Lucina and Heinze, Nicolai and Staat, Manfred and Neiss, Wolfram F. and Scaal, Martin and M{\"u}ller, Lars P.}, title = {Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow}, series = {Knee Surgery, Sports Traumatology, Arthroscopy}, volume = {25}, journal = {Knee Surgery, Sports Traumatology, Arthroscopy}, number = {7}, publisher = {Springer}, address = {Berlin}, issn = {1433-7347}, doi = {10.1007/s00167-017-4468-z}, pages = {2280 -- 2288}, year = {2017}, language = {en} } @article{YoshinobuMiyamotoWerneretal.2017, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species}, series = {Annual Review of Analytical Chemistry}, volume = {10}, journal = {Annual Review of Analytical Chemistry}, publisher = {Annual Reviews}, address = {Palo Alto, Calif.}, issn = {1936-1327}, doi = {10.1146/annurev-anchem-061516-045158}, pages = {225 -- 246}, year = {2017}, abstract = {A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.}, language = {en} } @article{BaeckerRakowskiKrappenetal.2017, author = {B{\"a}cker, M. and Rakowski, D. and Krappen, E. and Sch{\"o}ning, Michael Josef}, title = {Reinigungsprozesse in der Lebensmittelindustrie. Entwicklung eines Demonstrators zur {\"U}berwachung}, series = {GIT Labor-Fachzeitschrift}, volume = {61}, journal = {GIT Labor-Fachzeitschrift}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0016-3538}, pages = {26 -- 28}, year = {2017}, language = {de} } @article{Dikta2017, author = {Dikta, Gerhard}, title = {Semi-parametric random censorship models}, series = {From Statistics to Mathematical Finance : Festschrift in Honour of Winfried Stute}, journal = {From Statistics to Mathematical Finance : Festschrift in Honour of Winfried Stute}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-50986-0}, doi = {10.1007/978-3-319-50986-0_3}, pages = {43 -- 56}, year = {2017}, language = {en} } @article{EngelmannBuhlBaumannetal.2017, author = {Engelmann, Ulrich M. and Buhl, Eva Miriam and Baumann, Martin and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia}, series = {Current Directions in Biomedical Engineering}, volume = {3}, journal = {Current Directions in Biomedical Engineering}, number = {2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2017-0096}, pages = {457 -- 460}, year = {2017}, language = {en} } @article{ChenJostVolkeretal.2017, author = {Chen, Chao and Jost, Peter and Volker, Hanno and Kaminski, Marvin and Wirtssohn, Matti R. and Engelmann, Ulrich M. and Kr{\"u}ger, K. and Schlich, Franziska F. and Schlockermann, Carl and Lobo, Ricardo P.S.M. and Wuttig, Matthias}, title = {Dielectric properties of amorphous phase-change materials}, series = {Physical Review B}, volume = {95}, journal = {Physical Review B}, number = {9}, issn = {2469-9950}, doi = {10.1103/PhysRevB.95.094111}, pages = {Article number 094111}, year = {2017}, language = {en} } @article{RoethSlabuEngelmannetal.2017, author = {R{\"o}th, A.A. and Slabu, I. and Engelmann, Ulrich M. and Baumann, M. and Schmitz-Rode, T. and Neumann, U. P.}, title = {Targeting von gastroenterologischen Tumoren mittels magnetischer Nanopartikel zur hyperthermischen Therapie}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {55}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {8}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0037-1605124}, pages = {KV-384}, year = {2017}, language = {de} } @inproceedings{SchreiberKraftZuendorf2017, author = {Schreiber, Marc and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously}, series = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, booktitle = {39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina}, pages = {8 Seiten}, year = {2017}, abstract = {Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements. In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner's business model. This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal. An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time.}, language = {en} } @article{SousaSiqueiraVerciketal.2017, author = {Sousa, Marcos A. M. and Siqueira, Jose R. Jr. and Vercik, Andres and Sch{\"o}ning, Michael Josef and Oliveira, Osvaldo N. Jr.}, title = {Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors}, series = {IEEE Sensors Journal}, volume = {17}, journal = {IEEE Sensors Journal}, number = {6}, publisher = {IEEE}, address = {New York}, issn = {1558-1748}, doi = {10.1109/JSEN.2017.2653238}, pages = {1735 -- 1740}, year = {2017}, abstract = {The capacitive electrolyte-insulator-semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte-insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors.}, language = {en} } @article{ArreolaOberlaenderMaetzkowetal.2017, author = {Arreola, Julio and Oberl{\"a}nder, Jan and M{\"a}tzkow, M. and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Surface functionalization for spore-based biosensors with organosilanes}, series = {Electrochimica Acta}, volume = {241}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.04.157}, pages = {237 -- 243}, year = {2017}, abstract = {In the present work, surface functionalization of different sensor materials was studied. Organosilanes are well known to serve as coupling agent for biomolecules or cells on inorganic materials. 3-aminopropyltriethoxysilane (APTES) was used to attach microbiological spores time to an interdigitated sensor surface. The functionality and physical properties of APTES were studied on isolated sensor materials, namely silicon dioxide (SiO2) and platinum (Pt) as well as the combined material on sensor level. A predominant immobilization of spores could be demonstrated on SiO2 surfaces. Additionally, the impedance signal of APTES-functionalized biosensor chips has been investigated.}, language = {en} } @inproceedings{SchmidtsBoltesKraftetal.2017, author = {Schmidts, Oliver and Boltes, Maik and Kraft, Bodo and Schreiber, Marc}, title = {Multi-pedestrian tracking by moving Bluetooth-LE beacons and stationary receivers}, series = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, booktitle = {2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan}, pages = {1 -- 4}, year = {2017}, language = {en} } @article{DantismTakenagaWagneretal.2017, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors}, series = {Electrochimica Acta}, volume = {246}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.05.196}, pages = {234 -- 241}, year = {2017}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time.}, language = {en} } @article{JildehKirchnerOberlaenderetal.2017, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Kremers, Alexander and Wagner, Torsten and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring}, series = {physica status solidi a : applications and materials sciences}, journal = {physica status solidi a : applications and materials sciences}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201600912}, year = {2017}, abstract = {A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed.}, language = {en} } @article{ArreolaKeusgenSchoening2017, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Effect of O2 plasma on properties of electrolyte-insulator-semiconductor structures}, series = {physica status solidi a : applications and materials sciences}, volume = {214}, journal = {physica status solidi a : applications and materials sciences}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700025}, pages = {Artikel 1700025}, year = {2017}, abstract = {Prior to immobilization of biomolecules or cells onto biosensor surfaces, the surface must be physically or chemically activated for further functionalization. Organosilanes are a versatile option as they facilitate the immobilization through their terminal groups and also display self-assembly. Incorporating hydroxyl groups is one of the important methods for primary immobilization. This can be done, for example, with oxygen plasma treatment. However, this treatment can affect the performance of the biosensors and this effect is not quite well understood for surface functionalization. In this work, the effect of O2 plasma treatment on EIS sensors was investigated by means of electrochemical characterizations: capacitance-voltage (C-V) and constant capacitance (ConCap) measurements. After O2 plasma treatment, the potential of the EIS sensor dramatically shifts to a more negative value. This was successfully reset by using an annealing process.}, language = {en} } @article{MiyamotoHayashiSakamotoetal.2017, author = {Miyamoto, Ko-ichiro and Hayashi, Kosuke and Sakamoto, Azuma and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance}, series = {Sensor and Actuators B: Chemical}, volume = {248}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.03.002}, pages = {1006 -- 1010}, year = {2017}, abstract = {An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1\% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change.}, language = {en} } @article{WernerMiyamotoWagneretal.2017, author = {Werner, Frederik and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor}, series = {Sensor and Actuators B: Chemical}, volume = {248}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2017.02.057}, pages = {961 -- 965}, year = {2017}, abstract = {To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more.}, language = {en} }