@article{StreeseKotliarDeiserothetal.2020, author = {Streese, Lukas and Kotliar, Konstantin and Deiseroth, Arne and Infanger, Denis and Gugleta, Konstantin and Schmaderer, Christoph and Hanssen, Henner}, title = {Retinal endothelial function in cardiovascular risk patients: A randomized controlled exercise trial}, series = {Scandinavian Journal of Medicine and Science in Sports}, volume = {30}, journal = {Scandinavian Journal of Medicine and Science in Sports}, number = {2}, publisher = {Wiley}, address = {Oxford}, issn = {1600-0838}, doi = {10.1111/sms.13560}, pages = {272 -- 280}, year = {2020}, abstract = {The aim of this study was to investigate, for the first time, the effects of high-intensity interval training (HIIT) on retinal microvascular endothelial function in cardiovascular (CV) risk patients. In the randomized controlled trial, middle-aged and previously sedentary patients with increased CV risk (aged 58 ± 6 years) with ≥ two CV risk factors were randomized into a 12-week HIIT (n = 33) or control group (CG, n = 36) with standard physical activity recommendations. A blinded examiner measured retinal endothelial function by flicker light-induced maximal arteriolar (ADmax) and venular (VDmax) dilatation as well as the area under the arteriolar (AFarea) and venular (VFarea) flicker curve using a retinal vessel analyzer. Standardized assessments of CV risk factors, cardiorespiratory fitness, and retinal endothelial function were performed before and after HIIT. HIIT reduced body mass index, fat mass, and low-density lipoprotein and increased muscle mass and peak oxygen uptake (VO2peak). Both ADmax (pre: 2.7 ± 2.1\%, post: 3.0 ± 2.2\%, P = .018) and AFarea (pre: 32.6 ± 28.4\%*s, post: 37.7 ± 30.6\%*s, P = .016) increased after HIIT compared with CG (ADmax, pre: 3.2 ± 1.8\%, post: 2.9 ± 1.8\%, P = .254; AFarea, pre: 41.6 ± 28.5\%*s, post: 37.8 ± 27.0\%*s, P = .186). Venular function remained unchanged after HIIT. There was a significant association between ∆-change VO2peak and ∆-changes ADmax and AFarea (P = .026, R² = 0.073; P = .019, R² = 0.081, respectively). 12-weeks of HIIT improved retinal endothelial function in middle-aged patients with increased CV risk independent of the reduction in classical CV risk factors. Exercise has the potential to reverse or at least postpone progression of small vessel disease in older adults with increased CV risk under standard medication. Dynamic retinal vessel analysis seems to be a sensitive tool to detect treatment effects of exercise interventions on retinal microvascular endothelial function in middle-aged individuals with increased CV risk.}, language = {en} } @article{RauschKahmannBaltschunetal.2020, author = {Rausch, Valentin and Kahmann, Stephanie Lucina and Baltschun, Christoph and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study}, series = {The Journal of Hand Surgery}, volume = {45}, journal = {The Journal of Hand Surgery}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2020.01.006}, pages = {776.e1 -- 776.e9}, year = {2020}, abstract = {Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques.}, language = {en} } @article{JildehKirchnerOberlaenderetal.2020, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Vahidpour, Farnoosh and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide}, series = {Sensor and Actuators A: Physical}, volume = {303}, journal = {Sensor and Actuators A: Physical}, number = {111691}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2019.111691}, year = {2020}, abstract = {Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4\% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues.}, language = {en} } @article{MennickenPeterKaulenetal.2020, author = {Mennicken, Max and Peter, Sophia K. and Kaulen, Corinna and Simon, Ulrich and Karth{\"a}user, Silvia}, title = {Transport through Redox-Active Ru-Terpyridine Complexes Integrated in Single Nanoparticle Devices}, series = {The Journal of Physical Chemistry C}, volume = {124}, journal = {The Journal of Physical Chemistry C}, number = {8}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1932-7455}, doi = {10.1021/acs.jpcc.9b11716}, pages = {4881 -- 4889}, year = {2020}, abstract = {Transition metal complexes are electrofunctional molecules due to their high conductivity and their intrinsic switching ability involving a metal-to-ligand charge transfer. Here, a method is presented to contact reliably a few to single redox-active Ru-terpyridine complexes in a CMOS compatible nanodevice and preserve their electrical functionality. Using hybrid materials from 14 nm gold nanoparticles (AuNP) and bis-{4′-[4-(mercaptophenyl)-2,2′:6′,2″-terpyridine]}-ruthenium(II) complexes a device size of 30² nm² inclusive nanoelectrodes is achieved. Moreover, this method bears the opportunity for further downscaling. The Ru-complex AuNP devices show symmetric and asymmetric current versus voltage curves with a hysteretic characteristic in two well separated conductance ranges. By theoretical approximations based on the single-channel Landauer model, the charge transport through the formed double-barrier tunnel junction is thoroughly analyzed and its sensibility to the molecule/metal contact is revealed. It can be verified that tunneling transport through the HOMO is the main transport mechanism while decoherent hopping transport is present to a minor extent.}, language = {en} } @article{VoegeleGrajewskiGovorukhaetal.2020, author = {V{\"o}gele, Stefan and Grajewski, Matthias and Govorukha, Kristina and R{\"u}bbelke, Dirk}, title = {Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development}, series = {Applied Energy}, volume = {264}, journal = {Applied Energy}, number = {Article number: 114633}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2020.114633}, year = {2020}, abstract = {The steel industry in the European Union (EU), important for the economy as a whole, faces various challenges. These are inter alia volatile prices for relevant input factors, uncertainties concerning the regulation of CO₂-emissions and market shocks caused by the recently introduced additional import duties in the US, which is an important sales market. We examine primary and secondary effects of these challenges on the steel industry in the EU and their impacts on European and global level. Developing and using a suitable meta-model, we analyze the competitiveness of key steel producing countries with respect to floor prices depending on selected cost factors and draw conclusions on the impacts in the trade of steel on emissions, energy demand, on the involvement of developing countries in the value chain as well on the need for innovations to avoid relocations of production. Hence, our study contributes to the assessment of sustainable industrial development, which is aimed by the Sustainability Development Goal "Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation countries". By applying information on country-specific Human Development Indexes (reflecting aspects of life expectancy, education, and per capita income), we show that relocating energy-intensive industries from the EU may not only increase global energy demand and CO₂-emissions, but may also be to the disadvantage of developing countries.}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @article{DadfarCamozziDarguzyteetal.2020, author = {Dadfar, Dryed Mohammadali and Camozzi, Denise and Darguzyte, Milita and Roemhild, Karolin and Varvar{\`a}, Paola and Metselaar, Josbert and Banala, Srinivas and Straub, Marcel and G{\"u}ver, Nihan and Engelmann, Ulrich M. and Slabu, Ioana and Buhl, Miriam and Leusen, Jan van and K{\"o}gerler, Paul and Hermanns-Sachweh, Benita and Schulz, Volkmar and Kiessling, Fabian and Lammers, Twan}, title = {Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance}, series = {Journal of Nanobiotechnology}, volume = {18}, journal = {Journal of Nanobiotechnology}, number = {Article number 22}, publisher = {Nature Portfolio}, issn = {1477-3155}, doi = {10.1186/s12951-020-0580-1}, pages = {1 -- 13}, year = {2020}, abstract = {Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications.}, language = {en} } @article{AbelKahmannMellonetal.2020, author = {Abel, Alexander and Kahmann, Stephanie Lucina and Mellon, Stephen and Staat, Manfred and Jung, Alexander}, title = {An open-source tool for the validation of finite element models using three-dimensional full-field measurements}, series = {Medical Engineering \& Physics}, volume = {77}, journal = {Medical Engineering \& Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, doi = {10.1016/j.medengphy.2019.10.015}, pages = {125 -- 129}, year = {2020}, abstract = {Three-dimensional (3D) full-field measurements provide a comprehensive and accurate validation of finite element (FE) models. For the validation, the result of the model and measurements are compared based on two respective point-sets and this requires the point-sets to be registered in one coordinate system. Point-set registration is a non-convex optimization problem that has widely been solved by the ordinary iterative closest point algorithm. However, this approach necessitates a good initialization without which it easily returns a local optimum, i.e. an erroneous registration. The globally optimal iterative closest point (Go-ICP) algorithm has overcome this drawback and forms the basis for the presented open-source tool that can be used for the validation of FE models using 3D full-field measurements. The capability of the tool is demonstrated using an application example from the field of biomechanics. Methodological problems that arise in real-world data and the respective implemented solution approaches are discussed.}, language = {en} } @article{GerhardsSanderZivkovicetal.2020, author = {Gerhards, Michael and Sander, Volker and Zivkovic, Miroslav and Belloum, Adam and Bubak, Marian}, title = {New approach to allocation planning of many-task workflows on clouds}, series = {Concurrency and Computation: Practice and Experience}, volume = {32}, journal = {Concurrency and Computation: Practice and Experience}, number = {2 Article e5404}, publisher = {Wiley}, address = {Chichester}, issn = {1532-0634}, doi = {10.1002/cpe.5404}, pages = {1 -- 16}, year = {2020}, abstract = {Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.}, language = {en} } @article{TranStaat2020, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {Direct plastic structural design under lognormally distributed strength by chance constrained programming}, series = {Optimization and Engineering}, volume = {21}, journal = {Optimization and Engineering}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {1573-2924}, doi = {10.1007/s11081-019-09437-2}, pages = {131 -- 157}, year = {2020}, abstract = {We propose the so-called chance constrained programming model of stochastic programming theory to analyze limit and shakedown loads of structures under random strength with a lognormal distribution. A dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit and the shakedown limit. The edge-based smoothed finite element method (ES-FEM) is used with three-node linear triangular elements.}, language = {en} }