@inproceedings{KoenigWolf2018, author = {K{\"o}nig, Johannes Alexander and Wolf, Martin}, title = {Cybersecurity awareness training provided by the competence developing game GHOST}, series = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, booktitle = {ACHI 2018 : The Eleventh International Conference on Advances in Computer-Human Interactions}, isbn = {978-1-61208-616-3}, pages = {81 -- 87}, year = {2018}, abstract = {This paper introduces a Competence Developing Game (CDG) for the purpose of a cybersecurity awareness training for businesses. The target audience will be discussed in detail to understand their requirements. It will be explained why and how a mix of business simulation and serious game meets these stakeholder requirements. It will be shown that a tablet and touchscreen based approach is the most suitable solution. In addition, an empirical study will be briefly presented. The study was carried out to examine how an interaction system for a 3D-tablet based CDG has to be designed, to be manageable for non-game experienced employees. Furthermore, it will be explained which serious content is necessary for a Cybersecurity awareness training CDG and how this content is wrapped in the game}, language = {en} } @inproceedings{LeiseAltherr2018, author = {Leise, Philipp and Altherr, Lena}, title = {Optimizing the design and control of decentralized water supply systems - a case-study of a hotel building}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_107}, pages = {1241 -- 1252}, year = {2018}, abstract = {To increase pressure to supply all floors of high buildings with water, booster stations, normally consisting of several parallel pumps in the basement, are used. In this work, we demonstrate the potential of a decentralized pump topology regarding energy savings in water supply systems of skyscrapers. We present an approach, based on Mixed-Integer Nonlinear Programming, that allows to choose an optimal network topology and optimal pumps from a predefined construction kit comprising different pump types. Using domain-specific scaling laws and Latin Hypercube Sampling, we generate different input sets of pump types and compare their impact on the efficiency and cost of the total system design. As a realistic application example, we consider a hotel building with 325 rooms, 12 floors and up to four pressure zones.}, language = {en} } @inproceedings{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems}, series = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, booktitle = {FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems}, pages = {1 -- 12}, year = {2018}, abstract = {The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs.}, language = {en} } @incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @incollection{MuellerAltherrAholaetal.2018, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5}, doi = {10.1007/978-3-030-18500-8_44}, pages = {355 -- 361}, year = {2018}, abstract = {Around 60\% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.}, language = {en} } @article{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Meck, Marvin and Pelz, Peter F.}, title = {A holistic concept to design optimal water supply infrastructures for informal settlements using remote sensing data}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {2}, publisher = {MDPI}, address = {Basel}, isbn = {2072-4292}, doi = {10.3390/rs10020216}, pages = {1 -- 23}, year = {2018}, abstract = {Ensuring access to water and sanitation for all is Goal No. 6 of the 17 UN Sustainability Development Goals to transform our world. As one step towards this goal, we present an approach that leverages remote sensing data to plan optimal water supply networks for informal urban settlements. The concept focuses on slums within large urban areas, which are often characterized by a lack of an appropriate water supply. We apply methods of mathematical optimization aiming to find a network describing the optimal supply infrastructure. Hereby, we choose between different decentral and central approaches combining supply by motorized vehicles with supply by pipe systems. For the purposes of illustration, we apply the approach to two small slum clusters in Dhaka and Dar es Salaam. We show our optimization results, which represent the lowest cost water supply systems possible. Additionally, we compare the optimal solutions of the two clusters (also for varying input parameters, such as population densities and slum size development over time) and describe how the result of the optimization depends on the entered remote sensing data.}, language = {en} } @inproceedings{RauschFriesenAltherretal.2018, author = {Rausch, Lea and Friesen, John and Altherr, Lena and Pelz, Peter F.}, title = {Using mixed-integer programming for the optimal design of water supply networks for slums}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, editor = {Kliewer, Natalia and Ehmke, Jan Fabian and Bornd{\"o}rfer, Ralf}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0 (Print)}, doi = {10.1007/978-3-319-89920-6_68}, pages = {509 -- 516}, year = {2018}, abstract = {The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.}, language = {en} } @inproceedings{RuettersWeinheimerBragard2018, author = {R{\"u}tters, Ren{\´e} and Weinheimer, Marius and Bragard, Michael}, title = {Teaching Control Theory with a Simplified Helicopter Model and a Classroom Fitting Hardware Test-Bench}, series = {2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)}, booktitle = {2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)}, isbn = {978-1-5386-6903-7}, doi = {10.1109/RTUCON.2018.8659871}, year = {2018}, language = {en} } @article{SchifferFerrein2018, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {ERIKA—Early Robotics Introduction at Kindergarten Age}, series = {Multimodal Technologies Interact}, volume = {2}, journal = {Multimodal Technologies Interact}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2414-4088}, doi = {10.3390/mti2040064}, pages = {15}, year = {2018}, abstract = {In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human-robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents.}, language = {en} } @incollection{SchneiderWisselinkCzarnecki2018, author = {Schneider, Dominik and Wisselink, Frank and Czarnecki, Christian}, title = {Nutzen und Rahmenbedingungen 5 informationsgetriebener Gesch{\"a}ftsmodelle des Internets der Dinge}, series = {Digitalisierung in Unternehmen: von den theoretischen Ans{\"a}tzen zur praktischen Umsetzung}, booktitle = {Digitalisierung in Unternehmen: von den theoretischen Ans{\"a}tzen zur praktischen Umsetzung}, editor = {Barton, Thomas and M{\"u}ller, Christian and Seel, Christian}, publisher = {Springer}, address = {Wiesbaden}, isbn = {9783658227739}, doi = {10.1007/978-3-658-22773-9_5}, pages = {67 -- 85}, year = {2018}, abstract = {Im Kontext der zunehmenden Digitalisierung wird das Internet der Dinge (englisch: Internet of Things, IoT) als ein technologischer Treiber angesehen, durch den komplett neue Gesch{\"a}ftsmodelle im Zusammenspiel unterschiedlicher Akteure entstehen k{\"o}nnen. Identifizierte Schl{\"u}sselakteure sind unter anderem traditionelle Industrieunternehmen, Kommunen und Telekommunikationsunternehmen. Letztere sorgen mit der Bereitstellung von Konnektivit{\"a}t daf{\"u}r, dass kleine Ger{\"a}te mit winzigen Batterien nahezu {\"u}berall und direkt an das Internet angebunden werden k{\"o}nnen. Es sind schon viele IoT-Anwendungsf{\"a}lle auf dem Markt, die eine Vereinfachung f{\"u}r Endkunden darstellen, wie beispielsweise Philips Hue Tap. Neben Gesch{\"a}ftsmodellen basierend auf Konnektivit{\"a}t besteht ein großes Potenzial f{\"u}r informationsgetriebene Gesch{\"a}ftsmodelle, die bestehende Gesch{\"a}ftsmodelle unterst{\"u}tzen sowie weiterentwickeln k{\"o}nnen. Ein Beispiel daf{\"u}r ist der IoT-Anwendungsfall Park and Joy der Deutschen Telekom AG, bei dem Parkpl{\"a}tze mithilfe von Sensoren vernetzt und Autofahrer in Echtzeit {\"u}ber verf{\"u}gbare Parkpl{\"a}tze informiert werden. Informationsgetriebene Gesch{\"a}ftsmodelle k{\"o}nnen auf Daten aufsetzen, die in IoT-Anwendungsf{\"a}llen erzeugt werden. Zum Beispiel kann ein Telekommunikationsunternehmen Mehrwert sch{\"o}pfen, indem es aus Daten entscheidungsrelevantere Informationen - sogenannte Insights - ableitet, die zur Steigerung der Entscheidungsagilit{\"a}t genutzt werden. Außerdem k{\"o}nnen Insights monetarisiert werden. Die Monetarisierung von Insights kann nur nachhaltig stattfinden, wenn sorgf{\"a}ltig gehandelt wird und Rahmenbedingungen ber{\"u}cksichtigt werden. In diesem Kapitel wird das Konzept informationsgetriebener Gesch{\"a}ftsmodelle erl{\"a}utert und anhand des konkreten Anwendungsfalls Park and Joy verdeutlicht. Dar{\"u}ber hinaus werden Nutzen, Risiken und Rahmenbedingungen diskutiert.}, language = {de} } @inproceedings{SchollSuderSchiffer2018, author = {Scholl, Ingrid and Suder, Sebastian and Schiffer, Stefan}, title = {Direct Volume Rendering in Virtual Reality}, series = {Bildverarbeitung f{\"u}r die Medizin 2018}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2018}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-56537-7}, doi = {10.1007/978-3-662-56537-7_79}, pages = {297 -- 302}, year = {2018}, language = {en} } @inproceedings{SerrorHenzeHacketal.2018, author = {Serror, Martin and Henze, Martin and Hack, Sacha and Schuba, Marko and Wehrle, Klaus}, title = {Towards in-network security for smart homes}, series = {13th International Conference on Availability, Reliability and Security, ARES 2018; Hamburg; Germany; 27 August 2018 through 30 August 2018}, booktitle = {13th International Conference on Availability, Reliability and Security, ARES 2018; Hamburg; Germany; 27 August 2018 through 30 August 2018}, isbn = {978-145036448-5}, doi = {10.1145/3230833.3232802}, pages = {Article numer 3232802}, year = {2018}, language = {en} } @incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} }