@inproceedings{GoemmelButenwegKob2007, author = {G{\"o}mmel, A. and Butenweg, Christoph and Kob, M.}, title = {A fluid-structure interaction model of vocal fold oscillation}, series = {5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007}, booktitle = {5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007}, isbn = {978-888453674-7}, pages = {127 -- 128}, year = {2007}, abstract = {Since fluid-structure interaction within the finite-element method is state of the art in many engineering fields, this method is used in voice analysis. A quasi two-dimensional model of the vocal folds including the ventricular folds is presented. First results of self-sustained vocal fold oscillation are presented and possibilities as well as limitations are discussed.}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} }