@article{WendlandtKochBritzetal.2023, author = {Wendlandt, Tim and Koch, Claudia and Britz, Beate and Liedek, Anke and Schmidt, Nora and Werner, Stefan and Gleba, Yuri and Vahidpour, Farnoosh and Welden, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System}, series = {Viruses}, volume = {9}, journal = {Viruses}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {doi.org/10.3390/v15091951}, pages = {Artikel 1951}, year = {2023}, abstract = {Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.}, language = {en} } @article{BertzMolinnusSchoeningetal.2023, author = {Bertz, Morten and Molinnus, Denise and Sch{\"o}ning, Michael Josef and Homma, Takayuki}, title = {Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy}, series = {Chemosensors}, volume = {8}, journal = {Chemosensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080445}, pages = {Artikel 445}, year = {2023}, abstract = {Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore's core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores' coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death.}, language = {en} } @phdthesis{Gaigall2023, author = {Gaigall, Daniel}, title = {On selected problems in multivariate analysis}, doi = {10.15488/14304}, pages = {17 Seiten}, year = {2023}, abstract = {Selected problems in the field of multivariate statistical analysis are treated. Thereby, one focus is on the paired sample case. Among other things, statistical testing problems of marginal homogeneity are under consideration. In detail, properties of Hotelling's T² test in a special parametric situation are obtained. Moreover, the nonparametric problem of marginal homogeneity is discussed on the basis of possibly incomplete data. In the bivariate data case, properties of the Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on the basis of partly not identically distributed data are investigated. Similar testing problems are treated within the scope of the application of a result for the empirical process of the concomitants for partly categorial data. Furthermore, testing changes in the modeled solvency capital requirement of an insurance company by means of a paired sample from an internal risk model is discussed. Beyond the paired sample case, a new asymptotic relative efficiency concept based on the expected volumes of multidimensional confidence regions is introduced. Besides, a new approach for the treatment of the multi-sample goodness-of-fit problem is presented. Finally, a consistent test for the treatment of the goodness-of-fit problem is developed for the background of huge or infinite dimensional data.}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{KuchlerGuenthnerRibeiroetal.2023, author = {Kuchler, Timon and G{\"u}nthner, Roman and Ribeiro, Andrea and Hausinger, Renate and Streese, Lukas and W{\"o}hnl, Anna and Kesseler, Veronika and Negele, Johanna and Assali, Tarek and Carbajo-Lozoya, Javier and Lech, Maciej and Adorjan, Kristina and Stubbe, Hans Christian and Hanssen, Henner and Kotliar, Konstantin and Haller, Berhard and Heemann, Uwe and Schmaderer, Christoph}, title = {Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation}, volume = {26}, publisher = {Springer Nature}, address = {Dordrecht}, doi = {10.1007/s10456-023-09885-6}, pages = {547 -- 563}, year = {2023}, abstract = {Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42\% ± 1.77\% vs. 4.64\% ± 2.59\%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5-190.2] vs. 189.1 [179.4-197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8-0.9] vs. 0.88 [0.8-0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = - 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management.}, language = {en} } @inproceedings{KloeserBuesgenKohletal.2023, author = {Kl{\"o}ser, Lars and B{\"u}sgen, Andr{\´e} and Kohl, Philipp and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Explaining relation classification models with semantic extents}, series = {DeLTA 2023: Deep Learning Theory and Applications}, booktitle = {DeLTA 2023: Deep Learning Theory and Applications}, editor = {Conte, Donatello and Fred, Ana and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-39058-6 (Print)}, doi = {10.1007/978-3-031-39059-3_13}, pages = {189 -- 208}, year = {2023}, abstract = {In recent years, the development of large pretrained language models, such as BERT and GPT, significantly improved information extraction systems on various tasks, including relation classification. State-of-the-art systems are highly accurate on scientific benchmarks. A lack of explainability is currently a complicating factor in many real-world applications. Comprehensible systems are necessary to prevent biased, counterintuitive, or harmful decisions. We introduce semantic extents, a concept to analyze decision patterns for the relation classification task. Semantic extents are the most influential parts of texts concerning classification decisions. Our definition allows similar procedures to determine semantic extents for humans and models. We provide an annotation tool and a software framework to determine semantic extents for humans and models conveniently and reproducibly. Comparing both reveals that models tend to learn shortcut patterns from data. These patterns are hard to detect with current interpretability methods, such as input reductions. Our approach can help detect and eliminate spurious decision patterns during model development. Semantic extents can increase the reliability and security of natural language processing systems. Semantic extents are an essential step in enabling applications in critical areas like healthcare or finance. Moreover, our work opens new research directions for developing methods to explain deep learning models.}, language = {en} } @inproceedings{KohlFreyerKraemeretal.2023, author = {Kohl, Philipp and Freyer, Nils and Kr{\"a}mer, Yoka and Werth, Henri and Wolf, Steffen and Kraft, Bodo and Meinecke, Matthias and Z{\"u}ndorf, Albert}, title = {ALE: a simulation-based active learning evaluation framework for the parameter-driven comparison of query strategies for NLP}, series = {Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science}, booktitle = {Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science}, editor = {Conte, Donatello and Fred, Ana and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-39058-6 (Print)}, doi = {978-3-031-39059-3}, pages = {235 -- 253}, year = {2023}, abstract = {Supervised machine learning and deep learning require a large amount of labeled data, which data scientists obtain in a manual, and time-consuming annotation process. To mitigate this challenge, Active Learning (AL) proposes promising data points to annotators they annotate next instead of a subsequent or random sample. This method is supposed to save annotation effort while maintaining model performance. However, practitioners face many AL strategies for different tasks and need an empirical basis to choose between them. Surveys categorize AL strategies into taxonomies without performance indications. Presentations of novel AL strategies compare the performance to a small subset of strategies. Our contribution addresses the empirical basis by introducing a reproducible active learning evaluation (ALE) framework for the comparative evaluation of AL strategies in NLP. The framework allows the implementation of AL strategies with low effort and a fair data-driven comparison through defining and tracking experiment parameters (e.g., initial dataset size, number of data points per query step, and the budget). ALE helps practitioners to make more informed decisions, and researchers can focus on developing new, effective AL strategies and deriving best practices for specific use cases. With best practices, practitioners can lower their annotation costs. We present a case study to illustrate how to use the framework.}, language = {en} } @inproceedings{BuesgenKloeserKohletal.2023, author = {B{\"u}sgen, Andr{\´e} and Kl{\"o}ser, Lars and Kohl, Philipp and Schmidts, Oliver and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {From cracked accounts to fake IDs: user profiling on German telegram black market channels}, series = {Data Management Technologies and Applications}, booktitle = {Data Management Technologies and Applications}, editor = {Cuzzocrea, Alfredo and Gusikhin, Oleg and Hammoudi, Slimane and Quix, Christoph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-37889-8 (Print)}, doi = {10.1007/978-3-031-37890-4_9}, pages = {176 -- 202}, year = {2023}, abstract = {Messenger apps like WhatsApp and Telegram are frequently used for everyday communication, but they can also be utilized as a platform for illegal activity. Telegram allows public groups with up to 200.000 participants. Criminals use these public groups for trading illegal commodities and services, which becomes a concern for law enforcement agencies, who manually monitor suspicious activity in these chat rooms. This research demonstrates how natural language processing (NLP) can assist in analyzing these chat rooms, providing an explorative overview of the domain and facilitating purposeful analyses of user behavior. We provide a publicly available corpus of annotated text messages with entities and relations from four self-proclaimed black market chat rooms. Our pipeline approach aggregates the extracted product attributes from user messages to profiles and uses these with their sold products as features for clustering. The extracted structured information is the foundation for further data exploration, such as identifying the top vendors or fine-granular price analyses. Our evaluation shows that pretrained word vectors perform better for unsupervised clustering than state-of-the-art transformer models, while the latter is still superior for sequence labeling.}, language = {en} } @article{VoegeleJosyabhatlaBalletal.2023, author = {V{\"o}gele, Stefan and Josyabhatla, Vishnu Teja and Ball, Christopher and Rhoden, Imke and Grajewski, Matthias and R{\"u}bbelke, Dirk and Kuckshinrichs, Wilhelm}, title = {Robust assessment of energy scenarios from stakeholders' perspectives}, series = {Energy}, journal = {Energy}, number = {In Press, Article 128326}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6785 (Online)}, doi = {10.1016/j.energy.2023.128326}, year = {2023}, abstract = {Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @article{AchtsnichtToedterNiehuesetal.2019, author = {Achtsnicht, Stefan and T{\"o}dter, Julia and Niehues, Julia and Tel{\"o}ken, Matthias and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19010148}, pages = {15 Seiten}, year = {2019}, abstract = {For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.}, language = {en} } @article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @article{AchtsnichtNeuendorfFassbenderetal.2019, author = {Achtsnicht, Stefan and Neuendorf, Christian and Faßbender, Tobias and N{\"o}lke, Greta and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection}, series = {Plos One}, volume = {14}, journal = {Plos One}, number = {7}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219356}, pages = {e0219356}, year = {2019}, abstract = {Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin's B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml.}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} } @article{RhodenBallGrajewskietal.2023, author = {Rhoden, Imke and Ball, Christopher Stephen and Grajewski, Matthias and Kuckshinrich, Wilhelm}, title = {Reverse engineering of stakeholder preferences - A multi-criteria assessment of the German passenger car sector}, series = {Renewable and Sustainable Energy Reviews}, volume = {181}, journal = {Renewable and Sustainable Energy Reviews}, number = {July 2023}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-0321}, doi = {10.1016/j.rser.2023.113352}, pages = {Article number: 113352}, year = {2023}, abstract = {Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available.}, language = {en} } @inproceedings{Maurer2022, author = {Maurer, Florian}, title = {Framework to provide a simulative comparison of different energy market designs}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {2}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00215-6}, pages = {18 -- 20}, year = {2022}, abstract = {Useful market simulations are key to the evaluation of diferent market designs existing of multiple market mechanisms or rules. Yet a simulation framework which has a comparison of diferent market mechanisms in mind was not found. The need to create an objective view on different sets of market rules while investigating meaningful agent strategies concludes that such a simulation framework is needed to advance the research on this subject. An overview of diferent existing market simulation models is given which also shows the research gap and the missing capabilities of those systems. Finally, a methodology is outlined how a novel market simulation which can answer the research questions can be developed.}, language = {en} } @article{Gaigall2023, author = {Gaigall, Daniel}, title = {On the applicability of several tests to models with not identically distributed random effects}, series = {Statistics : A Journal of Theoretical and Applied Statistics}, volume = {57}, journal = {Statistics : A Journal of Theoretical and Applied Statistics}, publisher = {Taylor \& Francis}, address = {London}, isbn = {0323-3944}, issn = {1029-4910}, doi = {10.1080/02331888.2023.2193748}, pages = {14 Seiten}, year = {2023}, abstract = {We consider Kolmogorov-Smirnov and Cram{\´e}r-von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application.}, language = {en} } @inproceedings{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {Limit and shakedown analysis of structures under random strength}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {510 -- 518}, year = {2022}, abstract = {Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.}, language = {en} } @article{Gaigall2023, author = {Gaigall, Daniel}, title = {Allocating and forecasting changes in risk}, series = {Journal of risk}, volume = {25}, journal = {Journal of risk}, number = {3}, editor = {AitSahlia, Farid}, publisher = {Infopro Digital Risk}, address = {London}, issn = {1755-2842}, doi = {10.21314/JOR.2022.048}, pages = {1 -- 24}, year = {2023}, abstract = {We consider time-dependent portfolios and discuss the allocation of changes in the risk of a portfolio to changes in the portfolio's components. For this purpose we adopt established allocation principles. We also use our approach to obtain forecasts for changes in the risk of the portfolio's components. To put the approach into practice we present an implementation based on the output of a simulation. Allocation is illustrated with an example portfolio in the context of Solvency II. The quality of the forecasts is investigated with an empirical study.}, language = {en} } @article{RingersBialonskiEgeetal.2023, author = {Ringers, Christa and Bialonski, Stephan and Ege, Mert and Solovev, Anton and Hansen, Jan Niklas and Jeong, Inyoung and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia}, series = {eLife}, volume = {12}, journal = {eLife}, publisher = {eLife Sciences Publications}, issn = {2050-084X}, doi = {10.7554/eLife.77701}, pages = {27 Seiten}, year = {2023}, abstract = {Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{LiphardtFernandezGonzaloAlbrachtetal.2023, author = {Liphardt, Anna-Maria and Fernandez-Gonzalo, Rodrigo and Albracht, Kirsten and Rittweger, J{\"o}rn and Vico, Laurence}, title = {Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration}, series = {npj Microgravity}, volume = {9}, journal = {npj Microgravity}, number = {Article number: 9}, publisher = {Springer Nature}, issn = {2373-8065}, doi = {10.1038/s41526-023-00258-3}, pages = {1 -- 9}, year = {2023}, abstract = {Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.}, language = {en} } @article{GaigallGerstenberg2023, author = {Gaigall, Daniel and Gerstenberg, Julian}, title = {Cram{\´e}r-von-Mises tests for the distribution of the excess over a confidence level}, series = {Journal of Nonparametric Statistics}, journal = {Journal of Nonparametric Statistics}, publisher = {Taylor \& Francis}, issn = {1048-5252 (Print)}, doi = {10.1080/10485252.2023.2173958}, year = {2023}, abstract = {The Cram{\´e}r-von-Mises distance is applied to the distribution of the excess over a confidence level. Asymptotics of related statistics are investigated, and it is seen that the obtained limit distributions differ from the classical ones. For that reason, quantiles of the new limit distributions are given and new bootstrap techniques for approximation purposes are introduced and justified. The results motivate new one-sample goodness-of-fit tests for the distribution of the excess over a confidence level and a new confidence interval for the related fitting error. Simulation studies investigate size and power of the tests as well as coverage probabilities of the confidence interval in the finite sample case. A practice-oriented application of the Cram{\´e}r-von-Mises tests is the determination of an appropriate confidence level for the fitting approach. The adoption of the idea to the well-known problem of threshold detection in the context of peaks over threshold modelling is sketched and illustrated by data examples.}, language = {en} } @article{AyalaHarrisKleefeldetal.2023, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas and Pallikarakis, Nikolaos}, title = {Analysis of the transmission eigenvalue problem with two conductivity parameters}, series = {Applicable Analysis}, journal = {Applicable Analysis}, publisher = {Taylor \& Francis}, issn = {0003-6811}, doi = {10.1080/00036811.2023.2181167}, pages = {37 Seiten}, year = {2023}, abstract = {In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work.}, language = {en} } @article{SchoeningBronderWuetal.2017, author = {Sch{\"o}ning, Michael Josef and Bronder, Thomas and Wu, Chunsheng and Scheja, Sabrina and Jessing, Max and Metzger-Boddien, Christoph and Keusgen, Michael and Poghossian, Arshak}, title = {Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities}, series = {Proceedings}, volume = {1}, journal = {Proceedings}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings1080719}, pages = {Artikel 719}, year = {2017}, abstract = {Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed.}, language = {en} } @book{Laack2022, author = {Laack, Walter van}, title = {Greater Than the Entire Universe}, publisher = {van Laack GmbH}, address = {Aachen}, isbn = {978-3-936624-52-6}, pages = {120 Seiten}, year = {2022}, language = {en} } @inproceedings{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors}, series = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, booktitle = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, publisher = {IEEE}, isbn = {978-1-6654-5860-3 (Online)}, doi = {10.1109/ISOEN54820.2022.9789657}, pages = {4 Seiten}, year = {2022}, abstract = {A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy.}, language = {en} } @misc{TopcuMadabhushiStaat2022, author = {Topcu, Murat and Madabhushi, Gopal Santana Phani and Staat, Manfred}, title = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster}, doi = {10.6084/m9.figshare.19333295.v2}, year = {2022}, abstract = {Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius.}, language = {en} } @article{AngermannGuenthnerHanssenetal.2022, author = {Angermann, Susanne and G{\"u}nthner, Roman and Hanssen, Henner and Lorenz, Georg and Braunisch, Matthias C. and Steubl, Dominik and Matschkal, Julia and Kemmner, Stephan and Hausinger, Renate and Block, Zenonas and Haller, Bernhard and Heemann, Uwe and Kotliar, Konstantin and Grimmer, Timo and Schmaderer, Christoph}, title = {Cognitive impairment and microvascular function in end-stage renal disease}, series = {International Journal of Methods in Psychiatric Research (MPR)}, volume = {31}, journal = {International Journal of Methods in Psychiatric Research (MPR)}, number = {2}, publisher = {Wiley}, issn = {1049-8931 (Print)}, doi = {10.1002/mpr.1909}, pages = {1 -- 10}, year = {2022}, abstract = {Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention.}, language = {en} } @article{AkimbekovDigelTastambeketal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Marat, Adel K. and Turaliyeva, Moldir A. and Kaiyrmanova, Gulzhan K.}, title = {Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production}, series = {Biology}, volume = {11}, journal = {Biology}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11091306}, pages = {47 Seiten}, year = {2022}, abstract = {It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{BaringhausGaigall2017, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On Hotelling's T² test in a special paired sample case}, series = {Communications in Statistics - Theory and Methods}, volume = {48}, journal = {Communications in Statistics - Theory and Methods}, number = {2}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-415X}, doi = {10.1080/03610926.2017.1408828}, pages = {257 -- 267}, year = {2017}, abstract = {In a special paired sample case, Hotelling's T² test based on the differences of the paired random vectors is the likelihood ratio test for testing the hypothesis that the paired random vectors have the same mean; with respect to a special group of affine linear transformations it is the uniformly most powerful invariant test for the general alternative of a difference in mean. We present an elementary straightforward proof of this result. The likelihood ratio test for testing the hypothesis that the covariance structure is of the assumed special form is derived and discussed. Applications to real data are given.}, language = {en} } @article{BaringhausGaigall2017, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {Hotelling's T² tests in paired and independent survey samples: An efficiency comparison}, series = {Journal of Multivariate Analysis}, volume = {2017}, journal = {Journal of Multivariate Analysis}, number = {154}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2016.11.004}, pages = {177 -- 198}, year = {2017}, abstract = {Hotelling's T² tests in paired and independent survey samples are compared using the traditional asymptotic efficiency concepts of Hodges-Lehmann, Bahadur and Pitman, as well as through criteria based on the volumes of corresponding confidence regions. Conditions characterizing the superiority of a procedure are given in terms of population canonical correlation type coefficients. Statistical tests for checking these conditions are developed. Test statistics based on the eigenvalues of a symmetrized sample cross-covariance matrix are suggested, as well as test statistics based on sample canonical correlation type coefficients.}, language = {en} } @article{BaringhausGaigall2019, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an asymptotic relative efficiency concept based on expected volumes of confidence regions}, series = {Statistics - A Journal of Theoretical and Applied Statistic}, volume = {53}, journal = {Statistics - A Journal of Theoretical and Applied Statistic}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1029-4910}, doi = {10.1080/02331888.2019.1683560}, pages = {1396 -- 1436}, year = {2019}, abstract = {The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.}, language = {en} } @article{Gaigall2019, author = {Gaigall, Daniel}, title = {On a new approach to the multi-sample goodness-of-fit problem}, series = {Communications in Statistics - Simulation and Computation}, volume = {53}, journal = {Communications in Statistics - Simulation and Computation}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-4141}, doi = {10.1080/03610918.2019.1618472}, pages = {2971 -- 2989}, year = {2019}, abstract = {Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions.}, language = {en} } @article{DitzhausGaigall2018, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {A consistent goodness-of-fit test for huge dimensional and functional data}, series = {Journal of Nonparametric Statistics}, volume = {30}, journal = {Journal of Nonparametric Statistics}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1029-0311}, doi = {10.1080/10485252.2018.1486402}, pages = {834 -- 859}, year = {2018}, abstract = {A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cram{\´e}r-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals.}, language = {en} } @article{BaringhausGaigallThiele2018, author = {Baringhaus, Ludwig and Gaigall, Daniel and Thiele, Jan Philipp}, title = {Statistical inference for L²-distances to uniformity}, series = {Computational Statistics}, volume = {2018}, journal = {Computational Statistics}, number = {33}, publisher = {Springer}, address = {Berlin}, issn = {1613-9658}, doi = {10.1007/s00180-018-0820-0}, pages = {1863 -- 1896}, year = {2018}, abstract = {The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study.}, language = {en} } @article{BaringhausGaigall2015, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an independence test approach to the goodness-of-fit problem}, series = {Journal of Multivariate Analysis}, volume = {2015}, journal = {Journal of Multivariate Analysis}, number = {140}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2015.05.013}, pages = {193 -- 208}, year = {2015}, abstract = {Let X₁,…,Xₙ be independent and identically distributed random variables with distribution F. Assuming that there are measurable functions f:R²→R and g:R²→R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f(X₁,X₂),g(X₁,X₂) are independent, if and only if F∈F, we propose to treat the testing problem H:F∈F,K:F∉F by applying a consistent nonparametric independence test to the bivariate sample variables (f(Xᵢ,Xⱼ),g(Xᵢ,Xⱼ)),1⩽i,j⩽n,i≠j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov-Smirnov and Cram{\´e}r-von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions.}, language = {en} } @article{Gaigall2021, author = {Gaigall, Daniel}, title = {Test for Changes in the Modeled Solvency Capital Requirement of an Internal Risk Model}, series = {ASTIN Bulletin}, volume = {51}, journal = {ASTIN Bulletin}, number = {3}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {1783-1350}, doi = {10.1017/asb.2021.20}, pages = {813 -- 837}, year = {2021}, abstract = {In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic on partly not identically distributed data}, series = {Communications in Statistics - Theory and Methods}, volume = {51}, journal = {Communications in Statistics - Theory and Methods}, number = {12}, publisher = {Taylor \& Francis}, address = {London}, issn = {1532-415X}, doi = {10.1080/03610926.2020.1805767}, pages = {4006 -- 4028}, year = {2020}, abstract = {The established Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is investigated for partly not identically distributed data. Surprisingly, it turns out that the statistic has the well-known distribution-free limiting null distribution of the classical criterion under standard regularity conditions. An application is testing goodness-of-fit for the regression function in a non parametric random effects meta-regression model, where the consistency is obtained as well. Simulations investigate size and power of the approach for small and moderate sample sizes. A real data example based on clinical trials illustrates how the test can be used in applications.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Testing marginal homogeneity of a continuous bivariate distribution with possibly incomplete paired data}, series = {Metrika}, volume = {2020}, journal = {Metrika}, number = {83}, publisher = {Springer}, issn = {1435-926X}, doi = {10.1007/s00184-019-00742-5}, pages = {437 -- 465}, year = {2020}, abstract = {We discuss the testing problem of homogeneity of the marginal distributions of a continuous bivariate distribution based on a paired sample with possibly missing components (missing completely at random). Applying the well-known two-sample Cr{\´a}mer-von-Mises distance to the remaining data, we determine the limiting null distribution of our test statistic in this situation. It is seen that a new resampling approach is appropriate for the approximation of the unknown null distribution. We prove that the resulting test asymptotically reaches the significance level and is consistent. Properties of the test under local alternatives are pointed out as well. Simulations investigate the quality of the approximation and the power of the new approach in the finite sample case. As an illustration we apply the test to real data sets.}, language = {en} } @article{Gaigall2020, author = {Gaigall, Daniel}, title = {Rothman-Woodroofe symmetry test statistic revisited}, series = {Computational Statistics \& Data Analysis}, volume = {2020}, journal = {Computational Statistics \& Data Analysis}, number = {142}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9473}, doi = {10.1016/j.csda.2019.106837}, pages = {Artikel 106837}, year = {2020}, abstract = {The Rothman-Woodroofe symmetry test statistic is revisited on the basis of independent but not necessarily identically distributed random variables. The distribution-freeness if the underlying distributions are all symmetric and continuous is obtained. The results are applied for testing symmetry in a meta-analysis random effects model. The consistency of the procedure is discussed in this situation as well. A comparison with an alternative proposal from the literature is conducted via simulations. Real data are analyzed to demonstrate how the new approach works in practice.}, language = {en} } @inproceedings{Gaigall2022, author = {Gaigall, Daniel}, title = {On Consistent Hypothesis Testing In General Hilbert Spaces}, publisher = {Avestia Publishing}, address = {Orl{\´e}ans, Kanada}, doi = {10.11159/icsta22.157}, pages = {Paper No. 157}, year = {2022}, abstract = {Inference on the basis of high-dimensional and functional data are two topics which are discussed frequently in the current statistical literature. A possibility to include both topics in a single approach is working on a very general space for the underlying observations, such as a separable Hilbert space. We propose a general method for consistently hypothesis testing on the basis of random variables with values in separable Hilbert spaces. We avoid concerns with the curse of dimensionality due to a projection idea. We apply well-known test statistics from nonparametric inference to the projected data and integrate over all projections from a specific set and with respect to suitable probability measures. In contrast to classical methods, which are applicable for real-valued random variables or random vectors of dimensions lower than the sample size, the tests can be applied to random vectors of dimensions larger than the sample size or even to functional and high-dimensional data. In general, resampling procedures such as bootstrap or permutation are suitable to determine critical values. The idea can be extended to the case of incomplete observations. Moreover, we develop an efficient algorithm for implementing the method. Examples are given for testing goodness-of-fit in a one-sample situation in [1] or for testing marginal homogeneity on the basis of a paired sample in [2]. Here, the test statistics in use can be seen as generalizations of the well-known Cram{\´e}rvon-Mises test statistics in the one-sample and two-samples case. The treatment of other testing problems is possible as well. By using the theory of U-statistics, for instance, asymptotic null distributions of the test statistics are obtained as the sample size tends to infinity. Standard continuity assumptions ensure the asymptotic exactness of the tests under the null hypothesis and that the tests detect any alternative in the limit. Simulation studies demonstrate size and power of the tests in the finite sample case, confirm the theoretical findings, and are used for the comparison with concurring procedures. A possible application of the general approach is inference for stock market returns, also in high data frequencies. In the field of empirical finance, statistical inference of stock market prices usually takes place on the basis of related log-returns as data. In the classical models for stock prices, i.e., the exponential L{\´e}vy model, Black-Scholes model, and Merton model, properties such as independence and stationarity of the increments ensure an independent and identically structure of the data. Specific trends during certain periods of the stock price processes can cause complications in this regard. In fact, our approach can compensate those effects by the treatment of the log-returns as random vectors or even as functional data.}, language = {en} } @article{DitzhausGaigall2022, author = {Ditzhaus, Marc and Gaigall, Daniel}, title = {Testing marginal homogeneity in Hilbert spaces with applications to stock market returns}, series = {Test}, volume = {2022}, journal = {Test}, number = {31}, publisher = {Springer}, issn = {1863-8260}, doi = {10.1007/s11749-022-00802-5}, pages = {749 -- 770}, year = {2022}, abstract = {This paper considers a paired data framework and discusses the question of marginal homogeneity of bivariate high-dimensional or functional data. The related testing problem can be endowed into a more general setting for paired random variables taking values in a general Hilbert space. To address this problem, a Cram{\´e}r-von-Mises type test statistic is applied and a bootstrap procedure is suggested to obtain critical values and finally a consistent test. The desired properties of a bootstrap test can be derived that are asymptotic exactness under the null hypothesis and consistency under alternatives. Simulations show the quality of the test in the finite sample case. A possible application is the comparison of two possibly dependent stock market returns based on functional data. The approach is demonstrated based on historical data for different stock market indices.}, language = {en} } @article{GaigallGerstenbergTrinh2022, author = {Gaigall, Daniel and Gerstenberg, Julian and Trinh, Thi Thu Ha}, title = {Empirical process of concomitants for partly categorial data and applications in statistics}, series = {Bernoulli}, volume = {28}, journal = {Bernoulli}, number = {2}, publisher = {International Statistical Institute}, address = {Den Haag, NL}, issn = {1573-9759}, doi = {10.3150/21-BEJ1367}, pages = {803 -- 829}, year = {2022}, abstract = {On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.}, language = {en} } @inproceedings{StaatTran2022, author = {Staat, Manfred and Tran, Ngoc Trinh}, title = {Strain based brittle failure criteria for rocks}, series = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, booktitle = {Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022}, publisher = {Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)}, address = {Hanoi}, isbn = {978-604-357-084-7}, pages = {500 -- 509}, year = {2022}, abstract = {When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These "paradox" fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr-Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion.}, language = {en} } @article{BaringhausGaigall2022, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {A goodness-of-fit test for the compound Poisson exponential model}, series = {Journal of Multivariate Analysis}, volume = {195}, journal = {Journal of Multivariate Analysis}, number = {Article 105154}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2022.105154}, year = {2022}, abstract = {On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed.}, language = {en} } @article{TranTrinhDaoetal.2022, author = {Tran, Ngoc Trinh and Trinh, Tu Luc and Dao, Ngoc Tien and Giap, Van Tan and Truong, Manh Khuyen and Dinh, Thuy Ha and Staat, Manfred}, title = {FEM shakedown analysis of structures under random strength with chance constrained programming}, series = {Vietnam Journal of Mechanics}, volume = {44}, journal = {Vietnam Journal of Mechanics}, number = {4}, publisher = {Vietnam Academy of Science and Technology (VAST)}, issn = {0866-7136}, doi = {10.15625/0866-7136/17943}, pages = {459 -- 473}, year = {2022}, abstract = {Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2022, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Hydrogen-based steel production and global climate protection: An empirical analysis of the potential role of a European cross border adjustment mechanism}, series = {Journal of Cleaner Production}, volume = {380}, journal = {Journal of Cleaner Production}, number = {Part 2, Art. Nr.:135040}, publisher = {Elsevier}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2022.135040}, year = {2022}, abstract = {The European Union's aim to become climate neutral by 2050 necessitates ambitious efforts to reduce carbon emissions. Large reductions can be attained particularly in energy intensive sectors like iron and steel. In order to prevent the relocation of such industries outside the EU in the course of tightening environmental regulations, the establishment of a climate club jointly with other large emitters and alternatively the unilateral implementation of an international cross-border carbon tax mechanism are proposed. This article focuses on the latter option choosing the steel sector as an example. In particular, we investigate the financial conditions under which a European cross border mechanism is capable to protect hydrogen-based steel production routes employed in Europe against more polluting competition from abroad. By using a floor price model, we assess the competitiveness of different steel production routes in selected countries. We evaluate the climate friendliness of steel production on the basis of specific GHG emissions. In addition, we utilize an input-output price model. It enables us to assess impacts of rising cost of steel production on commodities using steel as intermediates. Our results raise concerns that a cross-border tax mechanism will not suffice to bring about competitiveness of hydrogen-based steel production in Europe because the cost tends to remain higher than the cost of steel production in e.g. China. Steel is a classic example for a good used mainly as intermediate for other products. Therefore, a cross-border tax mechanism for steel will increase the price of products produced in the EU that require steel as an input. This can in turn adversely affect competitiveness of these sectors. Hence, the effects of higher steel costs on European exports should be borne in mind and could require the cross-border adjustment mechanism to also subsidize exports.}, language = {en} } @inproceedings{BlaneckBornheimGriegeretal.2022, author = {Blaneck, Patrick Gustav and Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {Automatic readability assessment of german sentences with transformer ensembles}, series = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, booktitle = {Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text}, publisher = {Association for Computational Linguistics}, address = {Potsdam}, doi = {10.48550/arXiv.2209.04299}, pages = {57 -- 62}, year = {2022}, abstract = {Reliable methods for automatic readability assessment have the potential to impact a variety of fields, ranging from machine translation to self-informed learning. Recently, large language models for the German language (such as GBERT and GPT-2-Wechsel) have become available, allowing to develop Deep Learning based approaches that promise to further improve automatic readability assessment. In this contribution, we studied the ability of ensembles of fine-tuned GBERT and GPT-2-Wechsel models to reliably predict the readability of German sentences. We combined these models with linguistic features and investigated the dependence of prediction performance on ensemble size and composition. Mixed ensembles of GBERT and GPT-2-Wechsel performed better than ensembles of the same size consisting of only GBERT or GPT-2-Wechsel models. Our models were evaluated in the GermEval 2022 Shared Task on Text Complexity Assessment on data of German sentences. On out-of-sample data, our best ensemble achieved a root mean squared error of 0:435.}, language = {en} } @article{KotliarOrtnerConradietal.2022, author = {Kotliar, Konstantin and Ortner, Marion and Conradi, Anna and Hacker, Patricia and Hauser, Christine and G{\"u}nthner, Roman and Moser, Michaela and Muggenthaler, Claudia and Diehl-Schmid, Janine and Priller, Josef and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance}, series = {Neurobiology of Aging}, volume = {120}, journal = {Neurobiology of Aging}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0197-4580}, doi = {10.1016/j.neurobiolaging.2022.08.012}, pages = {117 -- 127}, year = {2022}, abstract = {Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis.}, language = {en} } @article{ColomboDriraFrotscheretal.2022, author = {Colombo, Daniele and Drira, Slah and Frotscher, Ralf and Staat, Manfred}, title = {An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis}, series = {International Journal for Numerical Methods in Engineering}, volume = {124}, journal = {International Journal for Numerical Methods in Engineering}, number = {2}, publisher = {Wiley}, address = {Chichester}, issn = {1097-0207}, doi = {10.1002/nme.7126}, pages = {402 -- 433}, year = {2022}, abstract = {Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element.}, language = {en} } @article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{PhilippEfthimiouPaganoetal.2022, author = {Philipp, Mohr and Efthimiou, Nikos and Pagano, Fiammetta and Kratochwil, Nicolaus and Pizzichemi, Marco and Tsoumpas, Charalampos and Auffray, Etiennette and Ziemons, Karl}, title = {Image reconstruction analysis for positron emission tomography with heterostructured scintillators}, series = {IEEE Transactions on Radiation and Plasma Medical Sciences}, volume = {7}, journal = {IEEE Transactions on Radiation and Plasma Medical Sciences}, number = {1}, publisher = {IEEE}, address = {New York, NY}, issn = {2469-7311}, doi = {10.1109/TRPMS.2022.3208615}, pages = {41 -- 51}, year = {2022}, abstract = {The concept of structure engineering has been proposed for exploring the next generation of radiation detectors with improved performance. A TOF-PET geometry with heterostructured scintillators with a pixel size of 3.0×3.1×15 mm3 was simulated using Monte Carlo. The heterostructures consisted of alternating layers of BGO as a dense material with high stopping power and plastic (EJ232) as a fast light emitter. The detector time resolution was calculated as a function of the deposited and shared energy in both materials on an event-by-event basis. While sensitivity was reduced to 32\% for 100 μm thick plastic layers and 52\% for 50 μm, the CTR distribution improved to 204±49 ps and 220±41 ps respectively, compared to 276 ps that we considered for bulk BGO. The complex distribution of timing resolutions was accounted for in the reconstruction. We divided the events into three groups based on their CTR and modeled them with different Gaussian TOF kernels. On a NEMA IQ phantom, the heterostructures had better contrast recovery in early iterations. On the other hand, BGO achieved a better contrast to noise ratio (CNR) after the 15th iteration due to the higher sensitivity. The developed simulation and reconstruction methods constitute new tools for evaluating different detector designs with complex time responses.}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @article{PourshahidiEngelmannOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Engelmann, Ulrich M. and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169969}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169969}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as "colourization") of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples' total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization.}, language = {en} } @article{UysalCreutzFiratetal.2022, author = {Uysal, Karya and Creutz, Till and Firat, Ipek Seda and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, pages = {2213}, year = {2022}, abstract = {Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3-4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications.}, language = {en} } @inproceedings{BuesgenKloeserKohletal.2022, author = {B{\"u}sgen, Andr{\´e} and Kl{\"o}ser, Lars and Kohl, Philipp and Schmidts, Oliver and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Exploratory analysis of chat-based black market profiles with natural language processing}, series = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, booktitle = {Proceedings of the 11th International Conference on Data Science, Technology and Applications}, isbn = {978-989-758-583-8}, issn = {2184-285X}, doi = {10.5220/0011271400003269}, pages = {83 -- 94}, year = {2022}, abstract = {Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods.}, language = {en} } @article{ChloeMalyaranCraveiroetal.2022, author = {Chlo{\´e}, Radermacher and Malyaran, Hanna and Craveiro, Rogerio Bastos and Peglow, Sarah and Behbahani, Mehdi and Pufe, Thomas and Wolf, Michael and Neuss, Sabine}, title = {Mechanical loading on cementoblasts: a mini review}, series = {Osteologie}, volume = {31}, journal = {Osteologie}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {1019-1291}, doi = {10.1055/a-1826-0777}, pages = {111 -- 118}, year = {2022}, abstract = {Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments.}, language = {en} } @article{LenzKahmannBehbahanietal.2022, author = {Lenz, Maximilian and Kahmann, Stephanie Lucina and Behbahani, Mehdi and Pennig, Lenhard and Hackl, Michael and Leschinger, Tim and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation}, series = {Archives of Orthopaedic and Trauma Surgery}, journal = {Archives of Orthopaedic and Trauma Surgery}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1434-3916}, doi = {10.1007/s00402-022-04471-9}, year = {2022}, abstract = {Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer's classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education.}, language = {en} } @article{MalinowskiFournierHorbachetal.2022, author = {Malinowski, Daniel and Fournier, Yvan and Horbach, Andreas and Frick, Michael and Magliani, Mirko and Kalverkamp, Sebastian and Hildinger, Martin and Spillner, Jan and Behbahani, Mehdi and Hima, Flutura}, title = {Computational fluid dynamics analysis of endoluminal aortic perfusion}, series = {Perfusion}, volume = {0}, journal = {Perfusion}, number = {0}, publisher = {Sage}, address = {London}, issn = {1477-111X}, doi = {10.1177/02676591221099809}, pages = {1 -- 8}, year = {2022}, abstract = {Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80\% for the blood coming from the heart and to 100\% for the blood leaving the cannula. 50\% and 90\% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90\% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation.}, language = {en} } @incollection{AkimbekovDigelSherelkhanetal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Razzaque, Mohammed S.}, title = {Vitamin D and Phosphate Interactions in Health and Disease}, series = {Phosphate Metabolism}, booktitle = {Phosphate Metabolism}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-91621-3}, doi = {10.1007/978-3-030-91623-7_5}, pages = {37 -- 46}, year = {2022}, abstract = {Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30-40\% and phosphate to nearly 80\%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.}, language = {en} } @article{BhattaraiHorbachStaatetal.2022, author = {Bhattarai, Aroj and Horbach, Andreas and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Virgin passive colon biomechanics and a literature review of active contraction constitutive models}, series = {Biomechanics}, volume = {2}, journal = {Biomechanics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2673-7078}, doi = {10.3390/biomechanics2020013}, pages = {138 -- 157}, year = {2022}, abstract = {The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel-Gasser-Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill's three-element model, Murphy's four-state cross-bridge chemical kinetic model and Huxley's sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.}, language = {en} } @article{DefosseKleinschmidtSchmutzetal.2022, author = {Defosse, Jerome and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Staat, Manfred and Gatzweiler, Karl-Heinz and Wappler, Frank and Schieren, Mark}, title = {Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study}, series = {Journal of Cardiothoracic and Vascular Anesthesia}, volume = {36}, journal = {Journal of Cardiothoracic and Vascular Anesthesia}, number = {8, Part B}, publisher = {Elsevier}, address = {New York, NY}, issn = {1053-0770}, doi = {10.1053/j.jvca.2022.02.017}, pages = {3021 -- 3027}, year = {2022}, language = {en} } @article{MandekarHollandThielenetal.2022, author = {Mandekar, Swati and Holland, Abigail and Thielen, Moritz and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22041568}, pages = {1 -- 19}, year = {2022}, abstract = {Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG.}, language = {en} } @article{TopcuMadabhushiStaat2022, author = {Top{\c{c}}u, Murat and Madabhushi, Gopal S.P. and Staat, Manfred}, title = {A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius}, series = {International Journal of Solids and Structures}, volume = {239-240}, journal = {International Journal of Solids and Structures}, number = {Art. No. 111464}, publisher = {Elsevier}, address = {New York, NY}, issn = {0020-7683}, doi = {10.1016/j.ijsolstr.2022.111464}, year = {2022}, abstract = {A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {Developing a control strategy for booster stations under uncertain load}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, number = {807}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.807.241}, pages = {241 -- 246}, year = {2015}, abstract = {Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.}, language = {en} } @article{GrundlachBaumannEngelmann2021, author = {Grundlach, Michael and Baumann, Martin and Engelmann, Ulrich M.}, title = {How Multimodal Examinations Can Increase Sustainable Student Gain by Aligning Teaching and Assessment}, series = {Current Directions in Biomedical Engineering}, volume = {7}, journal = {Current Directions in Biomedical Engineering}, number = {7/2}, editor = {D{\"o}ssel, Olaf}, publisher = {De Gruyter}, address = {Berlin}, isbn = {2364-5504}, doi = {10.1515/cdbme-2021-2019}, pages = {73 -- 76}, year = {2021}, abstract = {Modern industry and multi-discipline projects require highly trained individuals with resilient science and engineering back-grounds. Graduates must be able to agilely apply excellent theoretical knowledge in their subject matter as well as essential practical "hands-on" knowledge of diverse working processes to solve complex problems. To meet these demands, university education follows the concept of Constructive Alignment and thus increasingly adopts the teaching of necessary practical skills to the actual industry requirements and assessment routines. However, a systematic approach to coherently align these three central teaching demands is strangely absent from current university curricula. We demonstrate the feasibility of implementing practical assessments in a regular theory-based examination, thus defining the term "blended assessment". We assessed a course for natural science and engineering students pursuing a career in biomedical engineering, and evaluated the benefit of blended assessment exams for students and lecturers. Our controlled study assessed the physiological background of electrocardiograms (ECGs), the practical measurement of ECG curves, and their interpretation of basic pathologic alterations. To study on long time effects, students have been assessed on the topic twice with a time lag of 6 months. Our findings suggest a significant improvement in student gain with respect to practical skills and theoretical knowledge. The results of the reassessments support these outcomes. From the lecturers' point of view, blended assessment complements practical training courses while keeping organizational effort manageable. We consider blended assessment a viable tool for providing an improved student gain, industry-ready education format that should be evaluated and established further to prepare university graduates optimally for their future careers.}, language = {en} } @article{WerfelGuenthnerHapfelmeieretal.2022, author = {Werfel, Stanislas and G{\"u}nthner, Roman and Hapfelmeier, Alexander and Hanssen, Henner and Kotliar, Konstantin and Heemann, Uwe and Schmaderer, Christoph}, title = {Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning}, series = {Cardiovascular Research}, volume = {118}, journal = {Cardiovascular Research}, number = {2}, editor = {Guzik, Tomasz J.}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0008-6363}, doi = {10.1093/cvr/cvab040}, pages = {612 -- 621}, year = {2022}, abstract = {Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations.}, language = {en} } @article{AlbannaConzenWeissetal.2021, author = {Albanna, Walid and Conzen, Catharina and Weiss, Miriam and Seyfried, Katharina and Kotliar, Konstantin and Schmidt, Tobias Philip and Kuerten, David and Hescheler, J{\"u}rgen and Bruecken, Anne and Schmidt-Trucks{\"a}ss, Arno and Neumaier, Felix and Wiesmann, Martin and Clusmann, Hans and Schubert, Gerrit Alexander}, title = {Non-invasive assessment of neurovascular coupling after aneurysmal subarachnoid hemorrhage: a prospective observational trial using retinal vessel analysis}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, number = {12}, issn = {1664-2295}, doi = {10.3389/fneur.2021.690183}, pages = {1 -- 15}, year = {2021}, abstract = {Delayed cerebral ischemia (DCI) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH) and can lead to infarction and poor clinical outcome. The underlying mechanisms are still incompletely understood, but animal models indicate that vasoactive metabolites and inflammatory cytokines produced within the subarachnoid space may progressively impair and partially invert neurovascular coupling (NVC) in the brain. Because cerebral and retinal microvasculature are governed by comparable regulatory mechanisms and may be connected by perivascular pathways, retinal vascular changes are increasingly recognized as a potential surrogate for altered NVC in the brain. Here, we used non-invasive retinal vessel analysis (RVA) to assess microvascular function in aSAH patients at different times after the ictus.}, language = {en} } @article{KuertenKotliarFuestetal.2021, author = {Kuerten, David and Kotliar, Konstantin and Fuest, Matthias and Walter, Peter and Hollstein, Muriel and Plange, Niklas}, title = {Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study}, series = {International Ophthalmology}, volume = {41}, journal = {International Ophthalmology}, number = {41}, editor = {Neri, Piergiorgio}, publisher = {Springer}, address = {Berlin}, isbn = {1573-2630}, doi = {10.1007/s10792-021-01876-0}, pages = {3109 -- 3119}, year = {2021}, abstract = {Purpose Vascular risk factors and ocular perfusion are heatedly discussed in the pathogenesis of glaucoma. The retinal vessel analyzer (RVA, IMEDOS Systems, Germany) allows noninvasive measurement of retinal vessel regulation. Significant differences especially in the veins between healthy subjects and patients suffering from glaucoma were previously reported. In this pilot-study we investigated if localized vascular regulation is altered in glaucoma patients with altitudinal visual field defect asymmetry. Methods 15 eyes of 12 glaucoma patients with advanced altitudinal visual field defect asymmetry were included. The mean defect was calculated for each hemisphere separately (-20.99 ± 10.49 pro- found hemispheric visual field defect vs -7.36 ± 3.97 dB less profound hemisphere). After pupil dilation, RVA measurements of retinal arteries and veins were conducted using the standard protocol. The superior and inferior retinal vessel reactivity were measured consecutively in each eye. Results Significant differences were recorded in venous vessel constriction after flicker light stimulation and overall amplitude of the reaction (p \ 0.04 and p \ 0.02 respectively) in-between the hemispheres spheres. Vessel reaction was higher in the hemisphere corresponding to the more advanced visual field defect. Arterial diameters reacted similarly, failing to reach statistical significance. Conclusion Localized retinal vessel regulation is significantly altered in glaucoma patients with asymmetri altitudinal visual field defects. Veins supplying the hemisphere concordant to a less profound visual field defect show diminished diameter changes. Vascular dysregulation might be particularly important in early glaucoma stages prior to a significant visual field defect.}, language = {en} } @incollection{Kotliar2021, author = {Kotliar, Konstantin}, title = {Ocular rigidity: clinical approach}, series = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, booktitle = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, editor = {Pallikaris, I. and Tsilimbaris, M. K. and Dastiridou, A. I.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64422-2}, doi = {10.1007/978-3-030-64422-2_2}, pages = {15 -- 43}, year = {2021}, abstract = {The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.}, language = {en} } @article{HunkerGossmannRamanetal.2021, author = {Hunker, Jan L. and Gossmann, Matthias and Raman, Aravind Hariharan and Linder, Peter}, title = {Artificial neural networks in cardiac safety assessment: Classification of chemotherapeutic compound effects on hiPSC-derived cardiomyocyte contractility}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {111}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article number 107044}, publisher = {Elsevier}, address = {New York}, issn = {1056-8719}, doi = {10.1016/j.vascn.2021.107044}, year = {2021}, language = {en} } @article{TemizArtmannKurulgandemirciFıratetal.2021, author = {Temiz Artmann, Ayseg{\"u}l and Kurulgan demirci, Eylem and F{\i}rat, Ipek Seda and Oflaz, Hakan and Artmann, Gerhard}, title = {Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers}, series = {SHOCK}, journal = {SHOCK}, publisher = {Wolters Kluwer}, address = {K{\"o}ln}, issn = {1540-0514}, doi = {10.1097/SHK.0000000000001845}, year = {2021}, language = {en} } @article{HeinkeKnickerAlbracht2021, author = {Heinke, Lars N. and Knicker, Axel J. and Albracht, Kirsten}, title = {Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men}, series = {Journal of Electromyography and Kinesiology}, volume = {62}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102611}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2021.102611}, year = {2021}, abstract = {Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall "good" relative reliability. SRD 95\% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended.}, language = {en} } @inproceedings{MandekarJentschLutzetal.2021, author = {Mandekar, Swati and Jentsch, Lina and Lutz, Kai and Behbahani, Mehdi and Melnykowycz, Mark}, title = {Earable design analysis for sleep EEG measurements}, series = {UbiComp '21}, booktitle = {UbiComp '21}, doi = {10.1145/3460418.3479328}, pages = {171 -- 175}, year = {2021}, abstract = {Conventional EEG devices cannot be used in everyday life and hence, past decade research has been focused on Ear-EEG for mobile, at-home monitoring for various applications ranging from emotion detection to sleep monitoring. As the area available for electrode contact in the ear is limited, the electrode size and location play a vital role for an Ear-EEG system. In this investigation, we present a quantitative study of ear-electrodes with two electrode sizes at different locations in a wet and dry configuration. Electrode impedance scales inversely with size and ranges from 450 kΩ to 1.29 MΩ for dry and from 22 kΩ to 42 kΩ for wet contact at 10 Hz. For any size, the location in the ear canal with the lowest impedance is ELE (Left Ear Superior), presumably due to increased contact pressure caused by the outer-ear anatomy. The results can be used to optimize signal pickup and SNR for specific applications. We demonstrate this by recording sleep spindles during sleep onset with high quality (5.27 μVrms).}, language = {en} } @inproceedings{KloeserKohlKraftetal.2021, author = {Kl{\"o}ser, Lars and Kohl, Philipp and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Multi-attribute relation extraction (MARE): simplifying the application of relation extraction}, series = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, booktitle = {Proceedings of the 2nd International Conference on Deep Learning Theory and Applications - DeLTA}, isbn = {978-989-758-526-5}, doi = {10.5220/0010559201480156}, pages = {148 -- 156}, year = {2021}, abstract = {Natural language understanding's relation extraction makes innovative and encouraging novel business concepts possible and facilitates new digitilized decision-making processes. Current approaches allow the extraction of relations with a fixed number of entities as attributes. Extracting relations with an arbitrary amount of attributes requires complex systems and costly relation-trigger annotations to assist these systems. We introduce multi-attribute relation extraction (MARE) as an assumption-less problem formulation with two approaches, facilitating an explicit mapping from business use cases to the data annotations. Avoiding elaborated annotation constraints simplifies the application of relation extraction approaches. The evaluation compares our models to current state-of-the-art event extraction and binary relation extraction methods. Our approaches show improvement compared to these on the extraction of general multi-attribute relations.}, language = {en} } @article{JungStaat2020, author = {Jung, Alexander and Staat, Manfred}, title = {Erratum to "Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue" [GAMM-Mitteilungen, (2019), 42, 4, 10.1002/gamm.201900002]}, series = {GAMM-Mitteilungen}, volume = {43}, journal = {GAMM-Mitteilungen}, number = {4}, publisher = {Wiley-VCH GmbH}, address = {Weinheim}, issn = {1522-2608}, doi = {10.1002/gamm.202000011}, year = {2020}, language = {en} } @misc{JungMuellerStaat2021, author = {Jung, Alexander and M{\"u}ller, Wolfram and Staat, Manfred}, title = {Corrigendum to "Wind and fairness in ski jumping: A computer modelling analysis" [J. Biomech. 75 (2018) 147-153]}, series = {Journal of Biomechanics}, volume = {128}, journal = {Journal of Biomechanics}, number = {Article number: 110690}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2021.110690}, pages = {1 Seite}, year = {2021}, language = {en} } @book{DiktaScheer2021, author = {Dikta, Gerhard and Scheer, Marsel}, title = {Bootstrap Methods: With Applications in R}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-73480-0}, doi = {10.1007/978-3-030-73480-0}, pages = {XVI, 256 Seiten}, year = {2021}, abstract = {This book provides a compact introduction to the bootstrap method. In addition to classical results on point estimation and test theory, multivariate linear regression models and generalized linear models are covered in detail. Special attention is given to the use of bootstrap procedures to perform goodness-of-fit tests to validate model or distributional assumptions. In some cases, new methods are presented here for the first time. The text is motivated by practical examples and the implementations of the corresponding algorithms are always given directly in R in a comprehensible form. Overall, R is given great importance throughout. Each chapter includes a section of exercises and, for the more mathematically inclined readers, concludes with rigorous proofs. The intended audience is graduate students who already have a prior knowledge of probability theory and mathematical statistics.}, language = {en} } @inproceedings{SchmidtsKraftWinkensetal.2021, author = {Schmidts, Oliver and Kraft, Bodo and Winkens, Marvin and Z{\"u}ndorf, Albert}, title = {Catalog integration of heterogeneous and volatile product data}, series = {DATA 2020: Data Management Technologies and Applications}, booktitle = {DATA 2020: Data Management Technologies and Applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-83013-7}, doi = {10.1007/978-3-030-83014-4_7}, pages = {134 -- 153}, year = {2021}, abstract = {The integration of frequently changing, volatile product data from different manufacturers into a single catalog is a significant challenge for small and medium-sized e-commerce companies. They rely on timely integrating product data to present them aggregated in an online shop without knowing format specifications, concept understanding of manufacturers, and data quality. Furthermore, format, concepts, and data quality may change at any time. Consequently, integrating product catalogs into a single standardized catalog is often a laborious manual task. Current strategies to streamline or automate catalog integration use techniques based on machine learning, word vectorization, or semantic similarity. However, most approaches struggle with low-quality or real-world data. We propose Attribute Label Ranking (ALR) as a recommendation engine to simplify the integration process of previously unknown, proprietary tabular format into a standardized catalog for practitioners. We evaluate ALR by focusing on the impact of different neural network architectures, language features, and semantic similarity. Additionally, we consider metrics for industrial application and present the impact of ALR in production and its limitations.}, language = {en} } @inproceedings{KohlSchmidtsKloeseretal.2021, author = {Kohl, Philipp and Schmidts, Oliver and Kl{\"o}ser, Lars and Werth, Henri and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {STAMP 4 NLP - an agile framework for rapid quality-driven NLP applications development}, series = {Quality of Information and Communications Technology. QUATIC 2021}, booktitle = {Quality of Information and Communications Technology. QUATIC 2021}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-85346-4}, doi = {10.1007/978-3-030-85347-1_12}, pages = {156 -- 166}, year = {2021}, abstract = {The progress in natural language processing (NLP) research over the last years, offers novel business opportunities for companies, as automated user interaction or improved data analysis. Building sophisticated NLP applications requires dealing with modern machine learning (ML) technologies, which impedes enterprises from establishing successful NLP projects. Our experience in applied NLP research projects shows that the continuous integration of research prototypes in production-like environments with quality assurance builds trust in the software and shows convenience and usefulness regarding the business goal. We introduce STAMP 4 NLP as an iterative and incremental process model for developing NLP applications. With STAMP 4 NLP, we merge software engineering principles with best practices from data science. Instantiating our process model allows efficiently creating prototypes by utilizing templates, conventions, and implementations, enabling developers and data scientists to focus on the business goals. Due to our iterative-incremental approach, businesses can deploy an enhanced version of the prototype to their software environment after every iteration, maximizing potential business value and trust early and avoiding the cost of successful yet never deployed experiments.}, language = {en} } @inproceedings{BornheimGriegerBialonski2021, author = {Bornheim, Tobias and Grieger, Niklas and Bialonski, Stephan}, title = {FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning}, series = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, booktitle = {Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021}, publisher = {Heinrich Heine University}, address = {D{\"u}sseldorf}, doi = {10.48415/2021/fhw5-x128}, pages = {105 -- 111}, year = {2021}, language = {en} } @incollection{EngelmannShashaSlabu2021, author = {Engelmann, Ulrich M. and Shasha, Carolyn and Slabu, Ioana}, title = {Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating}, series = {Magnetic nanoparticles in human health and medicine}, booktitle = {Magnetic nanoparticles in human health and medicine}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jeersey}, isbn = {978-1-119-75467-1}, pages = {327 -- 354}, year = {2021}, language = {en} } @inproceedings{OlderogMohrBegingetal.2021, author = {Olderog, M. and Mohr, P. and Beging, Stefan and Tsoumpas, C. and Ziemons, Karl}, title = {Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph}, series = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, booktitle = {2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)}, publisher = {IEEE}, isbn = {978-1-7281-7693-2}, doi = {10.1109/NSS/MIC42677.2020.9507901}, pages = {4 Seiten}, year = {2021}, abstract = {In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50\%, while a change of the energy resolution in the absorber layer from 12\% to 4.5\% results in a reduction of 60\%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.}, language = {en} } @article{BrockhausBehbahaniMurisetal.2021, author = {Brockhaus, Moritz K. and Behbahani, Mehdi and Muris, Farina and Jansen, Sebastian V. and Schmitz- Rode, Thomas and Steinseifer, Ulrich and Clauser, Johanna C.}, title = {In vitro thrombogenicity testing of pulsatile mechanical circulatory support systems: Design and proof-of-concept}, series = {Artificial Organs}, volume = {45}, journal = {Artificial Organs}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.14046}, pages = {1513 -- 1521}, year = {2021}, abstract = {Thrombogenic complications are a main issue in mechanical circulatory support (MCS). There is no validated in vitro method available to quantitatively assess the thrombogenic performance of pulsatile MCS devices under realistic hemodynamic conditions. The aim of this study is to propose a method to evaluate the thrombogenic potential of new designs without the use of complex in-vivo trials. This study presents a novel in vitro method for reproducible thrombogenicity testing of pulsatile MCS systems using low molecular weight heparinized porcine blood. Blood parameters are continuously measured with full blood thromboelastometry (ROTEM; EXTEM, FIBTEM and a custom-made analysis HEPNATEM). Thrombus formation is optically observed after four hours of testing. The results of three experiments are presented each with two parallel loops. The area of thrombus formation inside the MCS device was reproducible. The implantation of a filter inside the loop catches embolizing thrombi without a measurable increase of platelet activation, allowing conclusions of the place of origin of thrombi inside the device. EXTEM and FIBTEM parameters such as clotting velocity (α) and maximum clot firmness (MCF) show a total decrease by around 6\% with a characteristic kink after 180 minutes. HEPNATEM α and MCF rise within the first 180 minutes indicate a continuously increasing activation level of coagulation. After 180 minutes, the consumption of clotting factors prevails, resulting in a decrease of α and MCF. With the designed mock loop and the presented protocol we are able to identify thrombogenic hot spots inside a pulsatile pump and characterize their thrombogenic potential.}, language = {en} } @article{NeumaierWeissVeldemanetal.2021, author = {Neumaier, Felix and Weiss, Miriam and Veldeman, Michael and Kotliar, Konstantin and Wiesmann, Martin and Schulze-Steinen, Henna and H{\"o}llig, Anke and Clusmann, Hans and Schubert, Gerrit Alexander and Albanna, Walid}, title = {Changes in endogenous daytime melatonin levels after aneurysmal subarachnoid hemorrhage - preliminary findings from an observational cohort study}, series = {Clinical Neurology and Neurosurgery}, volume = {208}, journal = {Clinical Neurology and Neurosurgery}, number = {Article No.: 106870}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0303-8467}, doi = {10.1016/j.clineuro.2021.106870}, year = {2021}, abstract = {Aneurysmal subarachnoid hemorrhage (aSAH) is associated with early and delayed brain injury due to several underlying and interrelated processes, which include inflammation, oxidative stress, endothelial, and neuronal apoptosis. Treatment with melatonin, a cytoprotective neurohormone with anti-inflammatory, anti-oxidant and anti-apoptotic effects, has been shown to attenuate early brain injury (EBI) and to prevent delayed cerebral vasospasm in experimental aSAH models. Less is known about the role of endogenous melatonin for aSAH outcome and how its production is altered by the pathophysiological cascades initiated during EBI. In the present observational study, we analyzed changes in melatonin levels during the first three weeks after aSAH.}, language = {en} } @article{HugenrothBorchardtRitteretal.2021, author = {Hugenroth, Kristin and Borchardt, Ralf and Ritter, Philine and Groß‑Hardt, Sascha and Meyns, Bart and Verbelen, Tom and Steinseifer, Ulrich and Kaufmann, Tim A. S. and Engelmann, Ulrich M.}, title = {Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {Art. No. 16800}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-96397-2}, pages = {1 -- 12}, year = {2021}, abstract = {Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5\% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6\%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.}, language = {en} } @article{PoghossianSchoening2021, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Recent progress in silicon-based biologically sensitive field-effect devices}, series = {Current Opinion in Electrochemistry}, journal = {Current Opinion in Electrochemistry}, number = {Article number: 100811}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2021.100811}, year = {2021}, abstract = {Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor's recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential.}, language = {en} } @phdthesis{Jung2021, author = {Jung, Alexander}, title = {Electromechanical modelling and simulation of hiPSC-derived cardiac cell cultures}, publisher = {Universit{\"a}t Duisburg-Essen}, isbn = {978-3-9821811-1-0}, url = {http://nbn-resolving.de/https://nbn-resolving.org/urn:nbn:de:hbz:464-20210624-134942-7}, pages = {III, 135 Seiten}, year = {2021}, language = {en} } @inproceedings{TranStaat2021, author = {Tran, Ngoc Trinh and Staat, Manfred}, title = {FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength}, series = {Proceedings of UNCECOMP 2021}, booktitle = {Proceedings of UNCECOMP 2021}, isbn = {978-618-85072-6-5}, doi = {10.7712/120221.8041.19047}, pages = {323 -- 338}, year = {2021}, abstract = {A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm.}, language = {en} } @article{BallVoegeleGrajewskietal.2021, author = {Ball, Christopher Stephen and V{\"o}gele, Stefan and Grajewski, Matthias and Kuckshinrichs, Wilhelm}, title = {E-mobility from a multi-actor point of view: Uncertainties and their impacts}, series = {Technological Forecasting and Social Change}, volume = {170}, journal = {Technological Forecasting and Social Change}, number = {Art. 120925}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0040-1625}, doi = {10.1016/j.techfore.2021.120925}, year = {2021}, language = {en} } @article{EngelmannShalabyShashaetal.2021, author = {Engelmann, Ulrich M. and Shalaby, Ahmed and Shasha, Carolyn and Krishnan, Kannan M. and Krause, Hans-Joachim}, title = {Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, isbn = {2079-4991}, doi = {10.3390/nano11051257}, pages = {1 -- 16}, year = {2021}, abstract = {Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90\% of the frequency mixing magnetic response signal is generated by the largest 10\% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.}, language = {en} } @article{NeumaierKotliarHaerenetal.2021, author = {Neumaier, Felix and Kotliar, Konstantin and Haeren, Roel Hubert Louis and Temel, Yasin and L{\"u}ke, Jan Niklas and Seyam, Osama and Lindauer, Ute and Clusmann, Hans and Hescheler, J{\"u}rgen and Schubert, Gerrit Alexander and Schneider, Toni and Albanna, Walid}, title = {Retinal Vessel Responses to Flicker Stimulation Are Impaired in Ca v 2.3-Deficient Mice—An in- vivo Evaluation Using Retinal Vessel Analysis (RVA)}, series = {Frontiers in Neurology}, volume = {12}, journal = {Frontiers in Neurology}, publisher = {Frontiers}, doi = {10.3389/fneur.2021.659890}, pages = {1 -- 11}, year = {2021}, language = {en} } @incollection{AkimbekovDigelRazzaque2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Razzaque, Mohammed S.}, title = {Role of vitamins in maintaining structure and function of intestinal microbiome}, series = {Comprehensive Gut Microbiota}, booktitle = {Comprehensive Gut Microbiota}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-822036-8}, doi = {10.1016/B978-0-12-819265-8.00043-7}, pages = {320 -- 334}, year = {2022}, abstract = {The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota.}, language = {en} } @article{HacklNacovKammerlohretal.2021, author = {Hackl, Michael and Nacov, Julia and Kammerlohr, Sandra and Staat, Manfred and Buess, Eduard and Leschinger, Tim and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure}, series = {The American Journal of Sports Medicine}, volume = {49}, journal = {The American Journal of Sports Medicine}, number = {7}, publisher = {Sage}, address = {London}, issn = {1552-3365}, doi = {10.1177/03635465211006138}, pages = {1847 -- 1853}, year = {2021}, language = {en} } @article{HugenrothNeidlinEngelmannetal.2021, author = {Hugenroth, Kristin and Neidlin, Michael and Engelmann, Ulrich M. and Kaufmann, Tim A. S. and Steinseifer, Ulrich and Heilmann, Torsten}, title = {Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk-Reduced Placement: an In Silico Proof-of-Concept}, series = {Artificial Organs}, journal = {Artificial Organs}, number = {Accepted Article}, publisher = {Wiley}, address = {Weinheim}, issn = {1525-1594}, doi = {10.1111/aor.13964}, year = {2021}, language = {en} } @article{WaldvogelRitzmannFreyleretal.2021, author = {Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Helm, Michael and Monti, Elena and Albracht, Kirsten and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco}, title = {The Anticipation of Gravity in Human Ballistic Movement}, series = {Frontiers in Physiology}, journal = {Frontiers in Physiology}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.614060}, year = {2021}, abstract = {Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} }