@article{MiyamotoSekiSutoetal.2018, author = {Miyamoto, Koichiro and Seki, Kosuke and Suto, Takeyuki and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers}, series = {Sensor and Actuators B: Chemical}, volume = {273}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.07.016}, pages = {1328 -- 1333}, year = {2018}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration.}, language = {en} } @article{MiyamotoYuIsodaetal.2016, author = {Miyamoto, Ko-ichiro and Yu, Bing and Isoda, Hiroko and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor}, series = {Sensors and Actuators B: Chemical}, volume = {236}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.04.018}, pages = {965 -- 969}, year = {2016}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed.}, language = {de} } @article{MiyamotoYoshidaSakaietal.2011, author = {Miyamoto, Ko-ichiro and Yoshida, Midori and Sakai, Taito and Matsuzaka, Atsushi and Wagner, Torsten and Kanoh, Sanoh and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Differential setup of light-addressable potentiometric sensor with an enzyme reactor in a flow channel}, series = {Japanese Journal of Applied Physics. 50 (2011)}, journal = {Japanese Journal of Applied Physics. 50 (2011)}, publisher = {Japan Society of Applied Physics}, address = {Bristol}, isbn = {0021-4922}, pages = {04DL08-1 -- 04DL08-5}, year = {2011}, language = {en} } @article{MiyamotoWagnerYoshinobuetal.2011, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Yoshinobu, Tatsuo and Kanoh, Shin`ichiro and Sch{\"o}ning, Michael Josef}, title = {Phase-mode LAPS and its application to chemical imaging}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 1}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {28 -- 32}, year = {2011}, language = {en} } @article{MiyamotoWagnerYoshinobuetal.2011, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Yoshinobu, Tatsuo and Kanoh, Shin`ichiro and Sch{\"o}ning, Michael Josef}, title = {Phase-mode operation of FDM-LAPS}, series = {Sensor letters}, volume = {9}, journal = {Sensor letters}, number = {2}, publisher = {American Scientific Publishers}, address = {Stevenson Ranch, Calif.}, isbn = {1546-1971}, pages = {691 -- 694}, year = {2011}, language = {en} } @article{MiyamotoWagnerMimuraetal.2011, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin{\´i}chiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, journal = {Sensors and Actuators B: Chemical. 154 (2011), H. 2}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1873-3077}, pages = {119 -- 123}, year = {2011}, language = {en} } @article{MiyamotoWagnerMimuraetal.2009, author = {Miyamoto, Ko-ichiro and Wagner, Torsten and Mimura, Shuhei and Kanoh, Shin`ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Constant-phase-mode operation of the light-addressable potentiometric sensor}, series = {Procedia Chemistry. 1 (2009), H. 1}, journal = {Procedia Chemistry. 1 (2009), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1876-6196}, pages = {1487 -- 1490}, year = {2009}, language = {en} } @inproceedings{MiyamotoSutoWerneretal.2017, author = {Miyamoto, Ko-ichiro and Suto, Takeyuki and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor}, series = {MDPI Proceedings}, volume = {1}, booktitle = {MDPI Proceedings}, number = {4}, doi = {10.3390/proceedings1040477}, pages = {4 Seiten}, year = {2017}, language = {en} } @article{MiyamotoSugawaraKanohetal.2010, author = {Miyamoto, Ko-ichiro and Sugawara, Yuri and Kanoh, Shin´ichiro and Yoshinobu, Tatsuo and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Image correction method for the chemical imaging sensor}, series = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, journal = {Sensors and Actuators B: Chemical. 144 (2010), H. 2}, pages = {344 -- 348}, year = {2010}, language = {en} } @article{MiyamotoSatoAbeetal.2016, author = {Miyamoto, Ko-Ichiro and Sato, Takuya and Abe, Minami and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices}, series = {Micromachines}, volume = {7}, journal = {Micromachines}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi7070111}, pages = {111}, year = {2016}, abstract = {A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement.}, language = {en} }