@article{DantismTakenagaWagneretal.2016, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Patrick and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533043}, pages = {1479 -- 1485}, year = {2016}, abstract = {On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable "down times" during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements.}, language = {en} } @article{HasanKeilStaatetal.2012, author = {Hasan, Istabrak and Keil, Ludger and Staat, Manfred and Wahl, Gerhard and Bourauel, Christoph}, title = {Determination of the frictional coefficient of the implant-antler interface : experimental approach}, series = {Biomedical Engineering / Biomedizinische Technik}, volume = {57}, journal = {Biomedical Engineering / Biomedizinische Technik}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, issn = {1862-278X}, pages = {359 -- 363}, year = {2012}, abstract = {The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.}, language = {en} } @article{SousaSiqueiraVerciketal.2017, author = {Sousa, Marcos A. M. and Siqueira, Jose R. Jr. and Vercik, Andres and Sch{\"o}ning, Michael Josef and Oliveira, Osvaldo N. Jr.}, title = {Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors}, series = {IEEE Sensors Journal}, volume = {17}, journal = {IEEE Sensors Journal}, number = {6}, publisher = {IEEE}, address = {New York}, issn = {1558-1748}, doi = {10.1109/JSEN.2017.2653238}, pages = {1735 -- 1740}, year = {2017}, abstract = {The capacitive electrolyte-insulator-semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte-insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors.}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {Developing a control strategy for booster stations under uncertain load}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, number = {807}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.807.241}, pages = {241 -- 246}, year = {2015}, abstract = {Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.}, language = {en} } @article{WagnerWernerMiyamotoetal.2012, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-Ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2010.12.003}, pages = {34 -- 39}, year = {2012}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{TurekKettererClassenetal.2007, author = {Turek, Monika and Ketterer, Lothar and Claßen, Melanie and Berndt, Heinz and Elbers, Gereon and Kr{\"u}ger, Peter and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and Electrochemical Investigations of an EIS-(Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection}, series = {Sensors}, volume = {7}, journal = {Sensors}, number = {8}, isbn = {1424-8220}, pages = {1415 -- 1426}, year = {2007}, language = {en} } @inproceedings{SchneiderAlHakimKayseretal.2017, author = {Schneider, Oliver and Al Hakim, Taher and Kayser, Peter and Digel, Ilya}, title = {Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces}, series = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, booktitle = {2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West}, editor = {Erni, Daniel and Fischerauer, Alice and Himmel, J{\"o}rg and Seeger, Thomas and Thelen, Klaus}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-9814801-9-1}, doi = {10.17185/duepublico/43984}, pages = {96 -- 97}, year = {2017}, language = {en} } @article{KeusgenJuengerKrestetal.2003, author = {Keusgen, M. and J{\"u}nger, M. and Krest, I. and Sch{\"o}ning, Michael Josef}, title = {Development of a biosensor specific for cysteine sulfoxides}, series = {Biosensors \& Bioelectronics. 18 (2003), H. 5-6}, journal = {Biosensors \& Bioelectronics. 18 (2003), H. 5-6}, isbn = {0956-5663}, pages = {805 -- 812}, year = {2003}, language = {en} } @article{IkenBronderGoretzkietal.2019, author = {Iken, Heiko and Bronder, Thomas and Goretzki, Alexander and Kriesel, Jana and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Willi and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900114}, pages = {1 -- 8}, year = {2019}, language = {en} } @article{SchoeningWagnerWangetal.2005, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Wang, C. and Otto, R. and Yoshinobu, T.}, title = {Development of a handheld 16 channel pen-type LAPS for electrochemical sensing}, series = {Sensors and Actuators B. 108 (2005)}, journal = {Sensors and Actuators B. 108 (2005)}, isbn = {0925-4005}, pages = {808 -- 814}, year = {2005}, language = {en} } @article{SchoeningWagnerWangetal.2004, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Wang, C. and Otto, R. and Yoshinobu, T.}, title = {Development of a handheld 16 channel pen-type LAPS for electrochemical sensing}, series = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, journal = {Technical digest of the 10th International Meeting on Chemical Sensors, July 11 - 14, 2004, Tsukuba, Japan / Japan Association of Chemical Sensors}, publisher = {Japan Association of Chemical Sensors}, address = {Fukuoka}, pages = {136 -- 137}, year = {2004}, language = {en} } @article{ReisertHenkelSchneideretal.2010, author = {Reisert, Steffen and Henkel, Hartmut and Schneider, Andreas and Sch{\"a}fer, Daniel and Friedrich, Peter and Berger, J{\"o}rg and Sch{\"o}ning, Michael Josef}, title = {Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems}, series = {Physica Status Solidi (A). 207 (2010), H. 4}, journal = {Physica Status Solidi (A). 207 (2010), H. 4}, isbn = {1862-6300}, pages = {913 -- 918}, year = {2010}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} } @article{JildehKirchnerOberlaenderetal.2020, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Vahidpour, Farnoosh and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide}, series = {Sensor and Actuators A: Physical}, volume = {303}, journal = {Sensor and Actuators A: Physical}, number = {111691}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-4247}, doi = {10.1016/j.sna.2019.111691}, year = {2020}, abstract = {Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor-pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4\% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues.}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{SpelthahnKirsanovLeginetal.2012, author = {Spelthahn, Heiko and Kirsanov, Dmitry and Legin, Andrey and Osterrath, Thomas and Schubert, J{\"u}rgen and Zander, Willi and Sch{\"o}ning, Michael Josef}, title = {Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1862-6319}, doi = {10.1002/pssa.201100733}, pages = {885 -- 891}, year = {2012}, abstract = {In industrial processes there is a variety of heavy metals (e.g., copper, zinc, cadmium, and lead) in use for wires, coatings, paints, alloys, batteries, etc. Since the application of these transition metals for industry is inevitable, it is a vital task to develop proper analytical techniques for their monitoring at low activity levels, especially because most of these elements are acutely toxic for biological organisms. The determination of ions in solution by means of a simple and inexpensive sensor array is, therefore, a promising task. In this work, a sensor array with heavy metal-sensitive chalcogenide glass membranes for the simultaneous detection of the four ions Ag⁺, Cu2⁺, Cd2⁺, and Pb2⁺ in solution is realized. The results of the physical characterization by means of microscopy, profilometry, Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM) as well as the electrochemical characterization by means of potentiometric measurements are presented. Additionally, the possibility to expand the sensor array by polymeric sensor membranes is discussed.}, language = {en} } @inproceedings{HunkerJungGossmannetal.2019, author = {Hunker, Jan and Jung, Alexander and Goßmann, Matthias and Linder, Peter and Staat, Manfred}, title = {Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {7 -- 8}, year = {2019}, abstract = {The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool.}, language = {en} } @article{RoehlenPilasSchoeningetal.2017, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid}, series = {Applied Biochemistry and Biotechnology}, volume = {183}, journal = {Applied Biochemistry and Biotechnology}, publisher = {Springer}, address = {Berlin}, issn = {1559-0291}, doi = {10.1007/s12010-017-2578-1}, pages = {566 -- 581}, year = {2017}, abstract = {Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.}, language = {en} }