@inproceedings{GoemmelButenwegKob2007, author = {G{\"o}mmel, A. and Butenweg, Christoph and Kob, M.}, title = {A fluid-structure interaction model of vocal fold oscillation}, series = {5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007}, booktitle = {5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007}, isbn = {978-888453674-7}, pages = {127 -- 128}, year = {2007}, abstract = {Since fluid-structure interaction within the finite-element method is state of the art in many engineering fields, this method is used in voice analysis. A quasi two-dimensional model of the vocal folds including the ventricular folds is presented. First results of self-sustained vocal fold oscillation are presented and possibilities as well as limitations are discussed.}, language = {en} } @article{BaumgartnerFidlerWethetal.2008, author = {Baumgartner, Werner and Fidler, Florian and Weth, Agnes and Habbecke, Martin and Jakob, Peter and Butenweg, Christoph and B{\"o}hme, Wolfgang}, title = {Investigating the locomotion of the sandfish in desert sand using NMR-Imaging}, series = {PLOS ONE}, volume = {3}, journal = {PLOS ONE}, number = {10}, publisher = {Plos}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0003309}, pages = {e3309}, year = {2008}, abstract = {The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and not as a solid material. In this fluidised sand the sandfish is able to "swim" using its limbs.}, language = {en} } @article{HoffstadtNikolauszKrafftetal.2024, author = {Hoffstadt, Kevin and Nikolausz, Marcell and Krafft, Simone and Bonatelli, Maria and Kumar, Vivekanantha and Harms, Hauke and Kuperjans, Isabel}, title = {Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation}, series = {Bioengineering}, volume = {11}, journal = {Bioengineering}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering11020165}, pages = {18 Seiten}, year = {2024}, language = {en} } @article{FrauenrathHezelHeinrichsetal.2009, author = {Frauenrath, Tobias and Hezel, Fabian and Heinrichs, Uwe and Kozerke, Sebastian and Utting, Jane and Kob, Malte and Butenweg, Christoph and Boesiger, Peter and Niendorf, Thoralf}, title = {Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope}, series = {Investigative Radiology}, volume = {44}, journal = {Investigative Radiology}, number = {9}, publisher = {Lippincott Williams \& Wilkins ; (via Ovid)}, address = {Philadelphia, Pa}, issn = {1536-0210 (online)}, doi = {10.1097/RLI.0b013e3181b4c15e}, pages = {539 -- 547}, year = {2009}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @article{BeckerFrauenrathHezeletal.2010, author = {Becker, Meike and Frauenrath, Tobias and Hezel, Fabian and Krombach, Gabriele A. and Kremer, Ute and Koppers, Benedikt and Butenweg, Christoph and Goemmel, Andreas and Utting, Jane F. and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T}, series = {European Radiology}, volume = {20}, journal = {European Radiology}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084 (Onlineausgabe)}, doi = {10.1007/s00330-009-1676-z}, pages = {1344 -- 1355}, year = {2010}, abstract = {Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT's performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)\% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)\%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)\% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)\%). Conclusions: ACT's intrinsic insensitivity to interference from electromagnetic fields renders}, language = {en} } @inproceedings{LuBeyerBosiljkovetal.2016, author = {Lu, S. and Beyer, K. and Bosiljkov, V. and Butenweg, Christoph and D'Ayala, D. and Degee, H. and Gams, M. and Klouda, J. and Lagomarsino, S. and Penna, A. and Mojsilovic, N. and da Porto, F. and Sorrentino, L. and Vintzileou, E.}, title = {Next generation of Eurocode 8, masonry chapter}, series = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, booktitle = {Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016}, editor = {Modena, Claudio and da Porto, F. and Valluzzi, M.R.}, publisher = {Taylor \& Francis}, address = {London}, isbn = {978-1-138-02999-6 (Print)}, pages = {695 -- 700}, year = {2016}, abstract = {This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date.}, language = {en} } @article{GiresiniSassuButenwegetal.2017, author = {Giresini, Linda and Sassu, Mauro and Butenweg, Christoph and Alecci, Valerio and De Stefano, Mario}, title = {Vault macro-element with equivalent trusses in global seismic analyses}, series = {Earthquakes and Structures}, volume = {12}, journal = {Earthquakes and Structures}, number = {4}, publisher = {Techno-Press}, address = {Taejŏn}, issn = {2092-7614 (Print)}, doi = {10.12989/eas.2017.12.4.409}, pages = {409 -- 423}, year = {2017}, abstract = {This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.}, language = {en} } @article{MarinkovicButenweg2022, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames}, series = {Engineering Structures}, volume = {272}, journal = {Engineering Structures}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.114959}, pages = {18 Seiten}, year = {2022}, abstract = {Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill's and frame's geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames.}, language = {en} } @book{DrummScheuermannWeidner2024, author = {Drumm, Christian and Scheuermann, Bernd and Weidner, Stefan}, title = {Introduction to SAP S/4HANA® : The official companion book based on model company Global Bike-for learning, teaching, and training}, publisher = {Espresso Tutorials}, address = {Gleichen}, isbn = {9783960122685}, pages = {619 Seiten}, year = {2024}, abstract = {This easy-to-understand introduction to SAP S/4HANA guides you through the central processes in sales, purchasing and procurement, finance, production, and warehouse management using the model company Global Bike. Familiarize yourself with the basics of business administration, the relevant organizational data, master data, and transactional data, as well as a selection of core business processes in SAP. Using practical examples and tutorials, you will soon become an SAP S/4HANA professional! Tutorials and exercises for beginners, advanced users, and experts make it easy for you to practice your new knowledge. The prerequisite for this book is access to an SAP S/4HANA client with Global Bike version 4.1. - Business fundamentals and processes in the SAP system - Sales, purchasing and procurement, production, finance, and warehouse management - Tutorials at different qualification levels, exercises, and recap of case studies - Includes extensive download material for students, lecturers, and professors}, language = {en} } @inproceedings{Tepecik2024, author = {Tepecik, Atakan}, title = {AstroBioLab: Review of technical and bioanalytical approaches}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {33 -- 34}, year = {2024}, abstract = {This study presents the concept of AstroBioLab, an autonomous astrobiological field laboratory tailored for the exploration of (sub)glacial habitats. AstroBioLab is an integral component of the TRIPLE (Technologies for Rapid Ice Penetration and subglacial Lake Exploration) DLR-funded project, aimed at advancing astrobiology research through the development and deployment of innovative technologies. AstroBioLab integrates diverse measurement techniques such as fluorescence microscopy, DNA sequencing and fluorescence spectrometry, while leveraging microfluidics for efficient sample delivery and preparation.}, language = {en} } @inproceedings{SherelkhanAlibekova2024, author = {Sherelkhan, Dinara and Alibekova, Alina}, title = {EEM spectroscopy characterization of humic substances of biomedical importance}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {31 -- 32}, year = {2024}, abstract = {Humic substances possess distinctive chemical features enabling their use in many advanced applications, including biomedical fields. No chemicals in nature have the same combination of specific chemical and biological properties as humic substances. Traditional medicine and modern research have demonstrated that humic substances from different sources possess immunomodulatory and anti-inflammatory properties, which makes them suitable for the prevention and treatment of chronic dermatoses, allergic rhinitis, atopic dermatitis, and other conditions characterized by inflammatory and allergic responses [1-4]. The use of humic compounds as agentswith antifungal and antiviral properties shows great potential [5-7].}, language = {en} } @inproceedings{SchmitzApandiSpillneretal.2024, author = {Schmitz, Annika and Apandi, Shah Eiman Amzar Shah and Spillner, Jan and Hima, Flutura and Behbahani, Mehdi}, title = {Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {29 -- 30}, year = {2024}, abstract = {Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA.}, language = {en} } @inproceedings{SimsekKrauseEngelmann2024, author = {Simsek, Beril and Krause, Hans-Joachim and Engelmann, Ulrich M.}, title = {Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection}, series = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, booktitle = {4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, editor = {Digel, Ilya and Staat, Manfred and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {27 -- 28}, year = {2024}, abstract = {Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs' flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation.}, language = {en} } @book{StaatDigelTrzewiketal.2024, author = {Staat, Manfred and Digel, Ilya and Trzewik, J{\"u}rgen and Sielemann, Stefanie and Erni, Daniel and Zylka, Waldemar}, title = {Symposium Proceedings; 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-65-3}, doi = {10.17185/duepublico/81475}, pages = {40 Seiten}, year = {2024}, language = {en} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @article{BungErpicumTullis2020, author = {Bung, Daniel Bernhard and Erpicum, S{\´e}bastien and Tullis, Blanke P.}, title = {Advances in hydraulic structures engineering}, series = {Journal of Hydraulic Engineering}, volume = {147}, journal = {Journal of Hydraulic Engineering}, number = {1}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429 (Druckausgabe)}, doi = {10.1061/(ASCE)HY.1943-7900.0001851}, pages = {1 Seite}, year = {2020}, language = {en} } @article{vonHaefenKrautwaldStolleetal.2022, author = {von H{\"a}fen, Hajo and Krautwald, Clemens and Stolle, Jacob and Bung, Daniel Bernhard and Goseberg, Nils}, title = {Overland flow of broken solitary waves over a two-dimensional coastal plane}, series = {Coastal Engineering}, volume = {175}, journal = {Coastal Engineering}, number = {August}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7379}, doi = {10.1016/j.coastaleng.2022.104125}, pages = {14 Seiten}, year = {2022}, abstract = {Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand.}, language = {en} } @unpublished{RingersBialonskiSolovevetal.2021, author = {Ringers, Christa and Bialonski, Stephan and Solovev, Anton and Hansen, Jan N. and Ege, Mert and Friedrich, Benjamin M. and Jurisch-Yaksi, Nathalie}, title = {Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2021.11.23.469646}, pages = {19 Seiten}, year = {2021}, abstract = {Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2014, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans}, series = {Journal of Orthopaedic Translation}, volume = {2}, journal = {Journal of Orthopaedic Translation}, number = {4}, publisher = {Elsevier}, address = {Singapore}, issn = {2214-0328}, doi = {10.1016/j.jot.2014.07.078}, pages = {238 -- 238}, year = {2014}, language = {en} }