@article{MalzahnWindmillerValdesRamirezetal.2011, author = {Malzahn, Kerstin and Windmiller, Joshua Ray and Vald{\´e}s-Ram{\´i}rez, Gabriela and Wang, Joseph and Sch{\"o}ning, Michael Josef}, title = {Wearable electrochemical sensors for in situ analysis in marine environments}, series = {Analyst. 136 (2011), H. 14}, journal = {Analyst. 136 (2011), H. 14}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {0003-2654}, pages = {2912 -- 2917}, year = {2011}, language = {en} } @article{LuethThustSteffenetal.2000, author = {L{\"u}th, H. and Thust, M. and Steffen, A. and Kordos, P. and Sch{\"o}ning, Michael Josef}, title = {Biochemical sensors with structured and porous silicon capacitors}, series = {Materials Science and Engineering B. 69-70 (2000)}, journal = {Materials Science and Engineering B. 69-70 (2000)}, isbn = {0921-5107}, pages = {104 -- 108}, year = {2000}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} } @article{KurowskiSchultzeLuethetal.2001, author = {Kurowski, A. and Schultze, J.W. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Micro- and nanopatterning of sensor chips by means of macroporous silicon}, series = {Transducers '01 Eurosensors XV : digest of technical papers / the 11th International Conference on Solid-State Sensors and Actuators, June 10-14, 2001, Munich, Germany. Ernst Obermeier (Ed.)}, journal = {Transducers '01 Eurosensors XV : digest of technical papers / the 11th International Conference on Solid-State Sensors and Actuators, June 10-14, 2001, Munich, Germany. Ernst Obermeier (Ed.)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-42150-5}, pages = {640 -- 643}, year = {2001}, language = {en} } @article{KurowskiSchultzeLuethetal.2002, author = {Kurowski, A. and Schultze, J. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Micro- and nanopatterning of sensor chips by means of macroporous silicon.}, series = {Sensors and Actuators B. 83 (2002), H. 1-3}, journal = {Sensors and Actuators B. 83 (2002), H. 1-3}, isbn = {0925-4005}, pages = {123 -- 128}, year = {2002}, language = {en} } @article{KraemerPitaZhouetal.2009, author = {Kr{\"a}mer, Melina and Pita, Marcos and Zhou, Jian and Ornatska, Maryna and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Coupling of Biocomputing Systems with Electronic Chips: Electronic Interface for Transduction of Biochemical Information}, series = {Journal of Physical Chemistry C: Nanomaterials and Interfaces. 113 (2009), H. 6}, journal = {Journal of Physical Chemistry C: Nanomaterials and Interfaces. 113 (2009), H. 6}, publisher = {American Cemical Society}, address = {Washington, DC}, isbn = {1932-7455}, pages = {2573 -- 2579}, year = {2009}, language = {en} } @inproceedings{KreyerStollenwerkSchoening2013, author = {Kreyer, J{\"o}rg and Stollenwerk, Dominik and Sch{\"o}ning, Michael Josef}, title = {Tagung des Forschernachwuchses der FH Aachen 20. November 2013 / ed.: J. Kreyer, D. Stollenwerk, M. J. Sch{\"o}ning}, publisher = {FH Aachen}, address = {Aachen}, pages = {64 S.}, year = {2013}, language = {de} } @article{KramerHalamkovaPoghossianetal.2013, author = {Kramer, Friederike and Halamkova, Lenka and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny and Halamek, Jan}, title = {Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American}, series = {The analyst. August 2013}, volume = {Vol. 138}, journal = {The analyst. August 2013}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal); 0003-2654 (Print)}, pages = {6251 -- 6257}, year = {2013}, language = {en} } @incollection{KochPoghossianWegeetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications}, series = {Virus-Derived Nanoparticles for Advanced Technologies}, booktitle = {Virus-Derived Nanoparticles for Advanced Technologies}, editor = {Wege, Christina}, publisher = {Humana Press}, address = {New York, NY}, isbn = {978-1-4939-7808-3}, doi = {10.1007/978-1-4939-7808-3}, pages = {553 -- 568}, year = {2018}, abstract = {Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance.}, language = {en} } @article{KochPoghossianSchoeningetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Wege, Christian}, title = {Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors}, series = {Nanotheranostics}, volume = {2}, journal = {Nanotheranostics}, number = {2}, publisher = {Ivyspring}, address = {Sydney}, issn = {2206-7418}, doi = {10.7150/ntno.22114}, pages = {184 -- 196}, year = {2018}, abstract = {The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts.}, language = {en} }