@inproceedings{MansurovZhubanovaDigeletal.2008, author = {Mansurov, Zulkhair and Zhubanova, Azhar A. and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Savitskaja, Irina S. and Kozhalakova, A. A. and Kistaubaeva, Aida S.}, title = {The sorption of LPS toxic shock by nanoparticles on base of carbonized vegetable raw materials}, year = {2008}, abstract = {Immobilization of lactobacillus on high temperature carbonizated vegetable raw material (rice husk, grape stones) increases their physiological activity and the quantity of the antibacterial metabolits, that consequently lead to increase of the antagonistic activity of lactobacillus. It is implies that the use of the nanosorbents for the attachment of the probiotical microorganisms are highly perspective for decision the important problems, such as the probiotical preparations delivery to the right address and their attachment to intestines mucosa with the following detoxication of gastro-intestinal tract and the normalization of it's microecology. Besides that, thus, the received carbonizated nanoparticles have peculiar properties - ability to sorption of LPS toxical shock and, hence, to the detoxication of LPS.}, subject = {Kohlenstofffaser}, language = {en} } @article{MartinGonzalezKotliarRiosMartinezetal.2014, author = {Martin-Gonzalez, Anabel and Kotliar, Konstantin and Rios-Martinez, Jorge and Lanzl, Ines and Navab, Nassir}, title = {Mediated-reality magnification for macular degeneration rehabilitation}, series = {Journal of Modern Optics}, volume = {61}, journal = {Journal of Modern Optics}, number = {17}, publisher = {Taylor \& Francis}, address = {London}, issn = {1362-3044}, doi = {10.1080/09500340.2014.936110}, pages = {1400 -- 1408}, year = {2014}, language = {en} } @incollection{McInnesBothmerDachwaldetal.2014, author = {McInnes, Colin R. and Bothmer, Volker and Dachwald, Bernd and Geppert, Ulrich R. M. E. and Heiligers, Jeannette and Hilgers, Alan and Johnson, Les and Macdonald, Malcolm and Reinhard, Ruedeger and Seboldt, Wolfgang and Spietz, Peter}, title = {Gossamer roadmap technology reference study for a Sub-L1 Space Weather Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {227 -- 242}, year = {2014}, abstract = {A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass platform and payload which can be accommodated on the DLR/ESA Gossamer-3 technology demonstration mission. A direct escape from Geostationary Transfer Orbit is assumed with the sail deployed after the escape burn. The use of a miniaturized, low mass platform and payload then allows the Gossamer-3 solar sail to potentially double the warning time of space weather events. The mission profile and mass budgets will be presented to achieve these ambitious goals.}, language = {en} } @article{MeyerGaalenLeschingeretal.2019, author = {Meyer, Carolin and Gaalen, Kerstin van and Leschinger, Tim and Scheyerer, Max J. and Neiss, Wolfram F. and Staat, Manfred and M{\"u}ller, Lars P. and Wegmann, Kilian}, title = {Kyphoplasty of Osteoporotic Fractured Vertebrae: A Finite Element Analysis about Two Types of Cement}, series = {BioMed Research International}, journal = {BioMed Research International}, doi = {10.1155/2019/9232813}, pages = {Article ID 9232813}, year = {2019}, language = {en} } @article{MichaelMayerWeberetal.2017, author = {Michael, Hackl and Mayer, Katharina and Weber, Mareike and Staat, Manfred and van Riet, Roger and Burkhart, Klau Josef and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Plate osteosynthesis of proximal ulna fractures : a biomechanical micromotion analysis}, series = {The journal of hand surgery}, volume = {42}, journal = {The journal of hand surgery}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0363-5023}, doi = {10.1016/j.jhsa.2017.05.014}, pages = {834.e1 -- 834.e7}, year = {2017}, language = {en} } @article{MiciliValterOflazetal.2013, author = {Micili, Serap C. and Valter, Markus and Oflaz, Hakan and Ozogul, Candan and Linder, Peter and F{\"o}ckler, Nicole and Artmann, Gerhard and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Optical coherence tomography : a potential tool to predict premature rupture of fetal membranes}, series = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, volume = {Vol. 227}, journal = {Proceedings of the Institution of Mechanical Engineers. Part H : Journal of engineering in medicine}, number = {No. 4}, publisher = {Sage}, address = {London}, issn = {0046-2039 (Print) ; 2041-3033 (E-Journal)}, pages = {393 -- 401}, year = {2013}, language = {en} } @article{MikielewiczKotliarBarraqueretal.2011, author = {Mikielewicz, Marek and Kotliar, Konstantin and Barraquer, Rafael I. and Michael, Ralph}, title = {Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus}, series = {British Journal of Ophthalmology (eBJO)}, volume = {95}, journal = {British Journal of Ophthalmology (eBJO)}, number = {6}, publisher = {BMJ Publ. Group}, address = {London}, issn = {1468-2079}, pages = {793 -- 798}, year = {2011}, language = {en} } @article{MontiWaldvogelRitzmannetal.2021, author = {Monti, Elena and Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Albracht, Kirsten and Helm, Michael and De Cesare, Niccol{\`o} and Pavan, Piero and Reggiani, Carlo and Gollhofer, Albert and Narici, Marco Vincenzo}, title = {Muscle in variable gravity: "I do not know where I am, but I know what to do"}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.714655}, pages = {19 Seiten}, year = {2021}, abstract = {Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal "Earth" gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth's gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g.}, language = {en} } @article{MoratFaudeHanssenetal.2020, author = {Morat, Mareike and Faude, Oliver and Hanssen, Henner and Ludyga, Sebastian and Zacher, Jonas and Eibl, Angi and Albracht, Kirsten and Donath, Lars}, title = {Agility Training to Integratively Promote Neuromuscular, Cognitive, Cardiovascular and Psychosocial Function in Healthy Older Adults: A Study Protocol of a One-Year Randomized-Controlled Trial}, series = {International Journal of Environmental Research and Public Health}, volume = {17}, journal = {International Journal of Environmental Research and Public Health}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1660-4601}, doi = {10.3390/ijerph17061853}, pages = {1 -- 14}, year = {2020}, abstract = {Exercise training effectively mitigates aging-induced health and fitness impairments. Traditional training recommendations for the elderly focus separately on relevant physiological fitness domains, such as balance, flexibility, strength and endurance. Thus, a more holistic and functional training framework is needed. The proposed agility training concept integratively tackles spatial orientation, stop and go, balance and strength. The presented protocol aims at introducing a two-armed, one-year randomized controlled trial, evaluating the effects of this concept on neuromuscular, cardiovascular, cognitive and psychosocial health outcomes in healthy older adults. Eighty-five participants were enrolled in this ongoing trial. Seventy-nine participants completed baseline testing and were block-randomized to the agility training group or the inactive control group. All participants undergo pre- and post-testing with interim assessment after six months. The intervention group currently receives supervised, group-based agility training twice a week over one year, with progressively demanding perceptual, cognitive and physical exercises. Knee extension strength, reactive balance, dual task gait speed and the Agility Challenge for the Elderly (ACE) serve as primary endpoints and neuromuscular, cognitive, cardiovascular, and psychosocial meassures serve as surrogate secondary outcomes. Our protocol promotes a comprehensive exercise training concept for older adults, that might facilitate stakeholders in health and exercise to stimulate relevant health outcomes without relying on excessively time-consuming physical activity recommendations.}, language = {en} } @article{MuellerJungAhammer2017, author = {M{\"u}ller, Wolfram and Jung, Alexander and Ahammer, Helmut}, title = {Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {Article number 2464}, publisher = {Springer Nature}, address = {Cham}, isbn = {2045-2322}, doi = {10.1038/s41598-017-02665-5}, pages = {1 -- 11}, year = {2017}, language = {en} }