@incollection{AkimbekovDigelSherelkhanetal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Razzaque, Mohammed S.}, title = {Vitamin D and Phosphate Interactions in Health and Disease}, series = {Phosphate Metabolism}, booktitle = {Phosphate Metabolism}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-91621-3}, doi = {10.1007/978-3-030-91623-7_5}, pages = {37 -- 46}, year = {2022}, abstract = {Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30-40\% and phosphate to nearly 80\%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.}, language = {en} } @article{PfaffEnningSutter2022, author = {Pfaff, Raphael and Enning, Manfred and Sutter, Stefan}, title = {A risk‑based approach to automatic brake tests for rail freight service: incident analysis and realisation concept}, series = {SN Applied Sciences}, volume = {4}, journal = {SN Applied Sciences}, number = {4}, publisher = {Springer}, address = {Cham}, issn = {2523-3971}, doi = {10.1007/s42452-022-05007-x}, pages = {1 -- 14}, year = {2022}, abstract = {This study reviews the practice of brake tests in freight railways, which is time consuming and not suitable to detect certain failure types. Public incident reports are analysed to derive a reasonable brake test hardware and communication architecture, which aims to provide automatic brake tests at lower cost than current solutions. The proposed solutions relies exclusively on brake pipe and brake cylinder pressure sensors, a brake release position switch as well as radio communication via standard protocols. The approach is embedded in the Wagon 4.0 concept, which is a holistic approach to a smart freight wagon. The reduction of manual processes yields a strong incentive due to high savings in manual labour and increased productivity.}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{SeboldtDachwald2003, author = {Seboldt, Wolfgang and Dachwald, Bernd}, title = {Solar sails for near-term advanced scientific deep space missions}, series = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, booktitle = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, pages = {14 Seiten}, year = {2003}, abstract = {Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN - comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission.}, language = {en} } @incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @inproceedings{DachwaldKahleWie2007, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Head-on impact deflection of NEAs: a case study for 99942 Apophis}, series = {Planetary Defense Conference 2007}, booktitle = {Planetary Defense Conference 2007}, pages = {1 -- 12}, year = {2007}, abstract = {Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value}, language = {en} } @article{BhattaraiHorbachStaatetal.2022, author = {Bhattarai, Aroj and Horbach, Andreas and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Virgin passive colon biomechanics and a literature review of active contraction constitutive models}, series = {Biomechanics}, volume = {2}, journal = {Biomechanics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2673-7078}, doi = {10.3390/biomechanics2020013}, pages = {138 -- 157}, year = {2022}, abstract = {The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel-Gasser-Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill's three-element model, Murphy's four-state cross-bridge chemical kinetic model and Huxley's sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine.}, language = {en} } @inproceedings{HandschuhStollenwerkBorchert2021, author = {Handschuh, Nils and Stollenwerk, Dominik and Borchert, J{\"o}rg}, title = {Operation of thermal storage power plants under high renewable grid penetration}, series = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, booktitle = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-5651-3}, pages = {261 -- 265}, year = {2021}, abstract = {The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 \%) and one from 2020 with a high renewable energy penetration (51 \%) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 \% compared to 2015.}, language = {en} }