@misc{Golland2020, author = {Golland, Alexander}, title = {Rezension zu: Hansen-Oest - Datenschutzbeauftragte (2020)}, series = {DSB Datenschutz-Berater}, volume = {44}, journal = {DSB Datenschutz-Berater}, number = {9}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, issn = {0170-7256}, pages = {228}, year = {2020}, language = {de} } @misc{Golland2020, author = {Golland, Alexander}, title = {Rezension zu: Auernhammer - DSGVO/BDSG, Kommentar (7. Auflage, 2020)}, series = {DSB Datenschutz-Berater}, volume = {44}, journal = {DSB Datenschutz-Berater}, number = {10}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, issn = {0170-7256}, pages = {260}, year = {2020}, language = {de} } @article{Golland2020, author = {Golland, Alexander}, title = {Datenschutzrechtliche Fragen personalisierter Preise — Herausforderungen von Algorithmen im Schnittbereich von Ethik, {\"O}konomie und Datenschutz}, series = {CR Computer und Recht}, volume = {36}, journal = {CR Computer und Recht}, number = {3}, publisher = {Verlag Dr. Otto Schmidt}, address = {K{\"o}ln}, isbn = {2194-4172}, doi = {10.9785/cr-2020-360313}, pages = {186 -- 194}, year = {2020}, language = {de} } @inproceedings{HauggKreyerKemperetal.2020, author = {Haugg, Albert Thomas and Kreyer, J{\"o}rg and Kemper, Hans and Hatesuer, Katerina and Esch, Thomas}, title = {Heat exchanger for ORC. adaptability and optimisation potentials}, series = {IIR International Rankine 2020 Conference}, booktitle = {IIR International Rankine 2020 Conference}, doi = {10.18462/iir.rankine.2020.1224}, pages = {10 Seiten}, year = {2020}, abstract = {The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine's cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.}, language = {en} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Resilience enhancement of critical infrastructure - graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt}, series = {14th WCEAM Proceedings}, booktitle = {14th WCEAM Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64228-0}, doi = {10.1007/978-3-030-64228-0_13}, pages = {137 -- 149}, year = {2020}, abstract = {Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS.}, language = {en} } @article{Golland2020, author = {Golland, Alexander}, title = {Verantwortlichkeit, Data Breach, das Ende von Fax \& E-Mail: Aufsichtsbeh{\"o}rden mit streitbaren Thesen}, series = {DSB Datenschutz-Berater}, volume = {44}, journal = {DSB Datenschutz-Berater}, number = {4}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, isbn = {0170-7256}, pages = {98 -- 100}, year = {2020}, language = {de} } @article{Golland2020, author = {Golland, Alexander}, title = {EDPB: Europ{\"a}ische Aufsichtsbeh{\"o}rden mit neuen Guidelines zur datenschutzkonformen Einwilligung}, series = {DSB Datenschutz-Berater}, volume = {44}, journal = {DSB Datenschutz-Berater}, number = {6}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, isbn = {0170-7256}, pages = {151 -- 153}, year = {2020}, language = {de} } @article{Golland2020, author = {Golland, Alexander}, title = {Weckruf f{\"u}r deutsche Großunternehmen? - Der neue Entwurf des IT-Sicherheitsgesetz 2.0}, series = {K\&R Kommunikation \& Recht}, volume = {23}, journal = {K\&R Kommunikation \& Recht}, number = {7-8}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, isbn = {1434-6354}, pages = {I}, year = {2020}, language = {de} } @article{Golland2020, author = {Golland, Alexander}, title = {Die „private" Datenverarbeitung im Internet. Verantwortlichkeiten und Rechtm{\"a}ßigkeit bei Nutzung von Plattformdiensten durch nat{\"u}rliche Personen}, series = {ZD Zeitschrift f{\"u}r Datenschutz}, volume = {10}, journal = {ZD Zeitschrift f{\"u}r Datenschutz}, number = {8}, editor = {Hoeren, Thomas and Schneider, Jochen and Selmayr, Martin and Spies, Axel and Wybitul, Tim}, publisher = {Beck}, address = {M{\"u}nchen}, isbn = {2192-5593}, pages = {397 -- 403}, year = {2020}, language = {de} } @incollection{Golland2020, author = {Golland, Alexander}, title = {Struggling with users' consent: Economic approach to solve the issue of coupling}, series = {Turning Point in Data Protection Law}, booktitle = {Turning Point in Data Protection Law}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8487-6909-4}, doi = {10.5771/9783748921561-121}, pages = {121 -- 126}, year = {2020}, language = {en} } @incollection{GollandOhrtmann2020, author = {Golland, Alexander and Ohrtmann, Jan-Peter}, title = {Video surveillance: The supervisory authorities' view andrecent case law}, series = {Turning Point in Data Protection Law}, booktitle = {Turning Point in Data Protection Law}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8487-6909-4}, doi = {10.5771/9783748921561-175}, pages = {175 -- 178}, year = {2020}, language = {en} } @article{Golland2020, author = {Golland, Alexander}, title = {Die Zukunft internationaler Datentransfers: Quo vadis?}, year = {2020}, abstract = {Nach dem Scheitern des Privacy Shield hofft der Datenschutzberater Alexander Golland, dass die europ{\"a}ischen Beh{\"o}rden bald konkrete Maßnahmen f{\"u}r den Datentransfer in Drittl{\"a}nder vorschlagen. Auch kleine Unternehmen m{\"u}ssten die Herausforderung bew{\"a}ltigen - sonst w{\"a}re das Urteil nur Wasser auf die M{\"u}hlen jener, die ohnehin {\"u}ber den Datenschutz schimpfen.}, language = {de} } @article{Golland2020, author = {Golland, Alexander}, title = {Datenschutzrechtliche Anforderungen an internationale Datentransfers}, series = {NJW - Neue Juristische Wochenschrift}, volume = {2020}, journal = {NJW - Neue Juristische Wochenschrift}, number = {36}, publisher = {Beck}, address = {M{\"u}nchen}, issn = {0341-1915}, pages = {2593 -- 2596}, year = {2020}, language = {de} } @misc{Golland2020, author = {Golland, Alexander}, title = {Anspruch gegen einen Suchmaschinenbetreiber auf L{\"o}schung von Suchergebnissen}, series = {ZD Zeitschrift f{\"u}r Datenschutz}, volume = {2020}, journal = {ZD Zeitschrift f{\"u}r Datenschutz}, number = {10}, publisher = {Beck}, address = {M{\"u}nchen}, issn = {2192-5593}, pages = {531 -- 532}, year = {2020}, language = {de} } @misc{Golland2020, author = {Golland, Alexander}, title = {Immaterieller Schadensersatz f{\"u}r die Weiterleitung von Daten {\"u}ber ein berufsbezogenes soziales Netzwerk}, series = {DSB Datenschutz-Berater}, volume = {44}, journal = {DSB Datenschutz-Berater}, number = {11}, publisher = {DFV Mediengruppe}, address = {Frankfurt a.M.}, issn = {0170-7256}, pages = {286 -- 288}, year = {2020}, language = {de} } @inproceedings{LeiseBreuerAltherretal.2020, author = {Leise, Philipp and Breuer, Tim and Altherr, Lena and Pelz, Peter F.}, title = {Development, validation and assessment of a resilient pumping system}, series = {Proceedings of the Joint International Resilience Conference, JIRC2020}, booktitle = {Proceedings of the Joint International Resilience Conference, JIRC2020}, isbn = {978-90-365-5095-6}, pages = {97 -- 100}, year = {2020}, abstract = {The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour.}, language = {en} } @inproceedings{MeckMuellerAltherretal.2020, author = {Meck, Marvin M. and M{\"u}ller, Tim M. and Altherr, Lena and Pelz, Peter F.}, title = {Improving an industrial cooling system using MINLP, considering capital and operating costs}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5 (Print)}, doi = {10.1007/978-3-030-48439-2_61}, pages = {505 -- 512}, year = {2020}, abstract = {The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system.}, language = {en} } @inproceedings{MuellerAltherrLeiseetal.2020, author = {M{\"u}ller, Tim M. and Altherr, Lena and Leise, Philipp and Pelz, Peter F.}, title = {Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5}, doi = {10.1007/978-3-030-48439-2_58}, pages = {481 -- 488}, year = {2020}, abstract = {Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.}, language = {en} } @article{MuellerLeiseLorenzetal.2020, author = {M{\"u}ller, Tim M. and Leise, Philipp and Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Optimization and validation of pumping system design and operation for water supply in high-rise buildings}, series = {Optimization and Engineering}, volume = {2021}, journal = {Optimization and Engineering}, number = {22}, publisher = {Springer}, issn = {1573-2924}, doi = {10.1007/s11081-020-09553-4}, pages = {643 -- 686}, year = {2020}, abstract = {The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps' characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer's point of view, keeping in mind the economically important trade-off between investment and operation costs.}, language = {en} } @inproceedings{LorenzAltherrPelz2020, author = {Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, editor = {Neufeld, Janis S. and Buscher, Udo and Lasch, Rainer and M{\"o}st, Dominik and Sch{\"o}nberger, J{\"o}rn}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48439-2}, doi = {10.1007/978-3-030-48439-2_63}, pages = {521 -- 527}, year = {2020}, abstract = {Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.}, language = {en} }