@article{RoethSlabuKolvenbachetal.2015, author = {R{\"o}th, A. and Slabu, I. and Kolvenbach, K. and Engelmann, Ulrich M. and Baumann, M. and Schmitz-Rode, T. and Trahms, L. and Neumann, U.}, title = {Aufnahmekinetik von magnetischen Nanopartikeln zur Tumortherapie in humanen Pankreaskarzinomzelllinien}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {53}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {8}, publisher = {Thieme}, address = {Stuttgart}, issn = {1439-7803}, doi = {10.1055/s-0035-1559529}, pages = {KC139}, year = {2015}, language = {de} } @article{AkimbekovDigelO’Herasetal.2015, author = {Akimbekov, N.Sh. and Digel, Ilya and O'Heras, C. and Tastambek, K.T. and Savitskaya, I.S. and Ualyeva, P.S. and Mansurov, Z.A. and Zhubanova, A.A.}, title = {Adsorption of bacterial lipopol ysaccharides on carbonized ri ce husks obtained in the batch experiments}, series = {KazNU Bulletin. Biology series}, volume = {60}, journal = {KazNU Bulletin. Biology series}, number = {No 1/2}, issn = {1563-0218}, pages = {144 -- 148}, year = {2015}, language = {en} } @phdthesis{Duong2015, author = {Duong, Minh Tuan}, title = {Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method - SFEM}, publisher = {RWTH Aachen University}, pages = {174 S.}, year = {2015}, language = {en} } @phdthesis{BassamAbduljabbar2015, author = {Bassam Abduljabbar, Rasha}, title = {Physikalisch-chemische Steuerung der Proteinstabilit{\"a}t in biologischen Systemen}, year = {2015}, language = {de} } @phdthesis{Gossmann2015, author = {Goßmann, Matthias}, title = {Entwicklung eines autokontraktilen Herzmuskelmodells zur funktionalen Medikamenten- und Toxinforschung}, publisher = {Universit{\"a}tsbibliothek Duisburg-Essen}, address = {Duisburg ; Essen}, year = {2015}, language = {de} } @phdthesis{Seifarth2015, author = {Seifarth, Volker}, title = {Ureteral tissue engineering : development of a bioreactor system and subsequent characterization of the generated biohybrids}, publisher = {Universit{\"a}tsbibliothek Duisburg-Essen}, address = {Duisburg ; Essen}, year = {2015}, language = {en} } @article{PoettgenEdererAltherretal.2015, author = {P{\"o}ttgen, Philipp and Ederer, Thorsten and Altherr, Lena and Pelz, Peter F.}, title = {Developing a control strategy for booster stations under uncertain load}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, number = {807}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.807.241}, pages = {241 -- 246}, year = {2015}, abstract = {Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.}, language = {en} } @techreport{BlandfordDachwaldDigeletal.2015, author = {Blandford, Daniel and Dachwald, Bernd and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecke, Hannah and Kowalski, Julia and Lindner, Peter and Plescher, Engelbert and Sch{\"o}ngarth, Sarah}, title = {Enceladus Explorer : Schlussbericht — Version: 1.0}, publisher = {FH Aachen}, address = {Aachen}, doi = {10.2314/GBV:86319950X}, year = {2015}, language = {de} } @article{BaringhausGaigall2015, author = {Baringhaus, Ludwig and Gaigall, Daniel}, title = {On an independence test approach to the goodness-of-fit problem}, series = {Journal of Multivariate Analysis}, volume = {2015}, journal = {Journal of Multivariate Analysis}, number = {140}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0047-259X}, doi = {10.1016/j.jmva.2015.05.013}, pages = {193 -- 208}, year = {2015}, abstract = {Let X₁,…,Xₙ be independent and identically distributed random variables with distribution F. Assuming that there are measurable functions f:R²→R and g:R²→R characterizing a family F of distributions on the Borel sets of R in the way that the random variables f(X₁,X₂),g(X₁,X₂) are independent, if and only if F∈F, we propose to treat the testing problem H:F∈F,K:F∉F by applying a consistent nonparametric independence test to the bivariate sample variables (f(Xᵢ,Xⱼ),g(Xᵢ,Xⱼ)),1⩽i,j⩽n,i≠j. A parametric bootstrap procedure needed to get critical values is shown to work. The consistency of the test is discussed. The power performance of the procedure is compared with that of the classical tests of Kolmogorov-Smirnov and Cram{\´e}r-von Mises in the special cases where F is the family of gamma distributions or the family of inverse Gaussian distributions.}, language = {en} } @incollection{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Shakedown analysis of Reissner-Mindlin plates using the edge-based smoothed finite element method}, series = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, booktitle = {Direct methods for limit states in structures and materials / Dieter Weichert ; Alan Ponter, ed.}, publisher = {Springer}, address = {Dordrecht [u.a.]}, isbn = {978-94-007-6826-0 (Print) 978-94-007-6827-7 (Online)}, doi = {10.1007/978-94-007-6827-7_5}, pages = {101 -- 117}, year = {2014}, abstract = {This paper concerns the development of a primal-dual algorithm for limit and shakedown analysis of Reissner-Mindlin plates made of von Mises material. At each optimization iteration, the lower bound of the shakedown load multiplier is calculated simultaneously with the upper bound using the duality theory. An edge-based smoothed finite element method (ES-FEM) combined with the discrete shear gap (DSG) technique is used to improve the accuracy of the solutions and to avoid the transverse shear locking behaviour. The method not only possesses all inherent features of convergence and accuracy from ES-FEM, but also ensures that the total number of variables in the optimization problem is kept to a minimum compared with the standard finite element formulation. Numerical examples are presented to demonstrate the effectiveness of the present method.}, language = {en} }